Department of Physics St. Albert's College (Autonomous) #### PHY1CRT0119: METHODOLOGY AND PERSPECTIVES OF PHYSICS #### I. Course Instructor | Name | Sem, Programme& Batch | Email | |-----------------|-----------------------------|--------------------------| | Dr. Sajeesh T H | Sem I B.Sc Physics, 2020-23 | sajeeshth@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|-------------------------|----------| | 1 | Contact hours | 35 | | 2 | Assessment (CAE & ESE) | 2 | | | Total | 37 | #### I. Course Objectives: - Introduced with the pursuit of physics, its history and methodology. - * Illustrate different number systems and their significance in Physics - * Interpret the Importance of measurements and error analysis which is central to Physics - * Realize the role of vectors and coordinate systems in Physics - * Capable of estimation of errors for the simple experiments in Physics . #### I. Course Delivery Plan This course is designed to make students get understanding and perform numerical analysis and integration. | Topics | Session No &
Date(s) | Methodology and
Duration | |--|-------------------------|-----------------------------| | Development of physics in the last century | 09/11/20 | Lectures | | Galileo, Newton, Einstein, | 11/11/20 | Lectures | | J J Thomson, Curies, Rayleigh | 12/11/20 | Lectures | | 10 B | Jigm | | | Max Plank, Heisenberg and Schrodinger | 16/11/20 | Lectures | |---|----------|----------| | Contributions of Indian physicists -C V Raman, H J Babha | 18/11/20 | Lectures | | J C Bose, S N Bose, M Saha, | 19/11/20 | Lectures | | S Chandrasekhar, Vikram Sarabhai, | 23/11/20 | Lectures | | MODULE II | | | | Decimal, hexadecimal and Binary.Conversions, | 25/11/20 | Lectures | | Binary arithmetic addition, | 30/11/20 | Lectures | | subtraction and multiplication. | 02/12/20 | Lectures | | 1's complement, 2's complement | 03/12/20 | Lectures | | Signed binary arithmetic, | 07/12/20 | Lectures | | BCD code, ASCII code, | 09/12/20 | Lectures | | Significance of binary number system in digital electronics | 10/12/20 | Lectures | | INTERNAL EXAM | 14/12/20 | EXAM | | Applications of vectors in Physics. | 16/12/20 | Lectures | | Differential and Integral vector calculus: | 17/12/20 | Lectures | | physical significance of Gradient, | 04/01/21 | Lectures | | physical significance of Divergence | 06/01/21 | Lectures | | physical significance of CURL | 07/01/21 | Lectures | | Line integral of vectors | 11/01/21 | Lectures | | surface integral of vectors | 13/01/21 | Lectures | | volume integral of vectors | 14/01/21 | Lectures | | Cartesian Co-ordinate system, | 18/01/21 | Lectures | | plane polar and spherical polar coordinates, | 20/01/21 | Lectures | | cylindricalcoordinates | 21/01/21 | Lectures | | MODULE III | | | | least count of instruments | 25/01/21 | Lectures | | Instruments for measuring mass | 27/01/21 | Lectures | | Instruments for measuring length | 28/01/21 | Lectures | | spectrometer | 01/02/21 | Lectures | | conversion of galvanometer to ammeter and voltmeter | 03/02/21 | Lectures | Mygam | 04/02/21 | Lectures | |----------|--| | 08/02/21 | Lectures | | 10/02/21 | Lectures | | 11/02/21 | Lectures | | 15/02/21 | Lectures | | 18/02/21 | EXAM | | | 08/02/21
10/02/21
11/02/21
15/02/21 | #### III. Innovative Learning Programmes | Name of Programme | Duration | Type | Proposed Time | |--|----------|------------|----------------------| | Hands on experiment with
instruruments, identify variaous
factors causing errors | 3 Days | Experiment | 4 th Week | ### IV. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. The assignments and seminars are individual assignments. | No | Topics | Activity | Submission Deadlines | | |------------|---------------------------------|---|---|--| | Assignment | Assignment on given topic | Preparation of assignment | As the topics are covered | Submit the assignment to
Google Classroom before
dead line | | Seminar | Presentation of the given topic | Presentation of 20
minutes duration
with proper
exhibiting materials | 20 th , 23 rd and
26 th hour of
Course | Present the seminar on the given topic | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### V. Attendance (one component in class participation): | <75 | Not eligible for appearing for ESE | |---------|------------------------------------| | 75-80% | 1 | | 80-85% | 2 | | 85-90% | 3 | | 90-95% | 4 | | 95-100% | 5 | #### VI. Required reading: 1. Digital electronics: Albert Paul Malvino - 2. Digital logic and computer design M. Morris Mano, PHI. - 3. Text book: Advanced course in Practical Physics by D Chattopadhyay- Chapter-1 - 4. Practical Physics, G L Squires, Third edn. Cambridge University Press. - 5. The theory of Errors in Physical Measurements- J C Pal- New Central Book Agency- 2010 Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM # Department of Physics St. Albert's College (Autonomous) #### PHY1CRT0119: MECHANICS AND PROPERTIES OF MATTER #### I. Course Instructor | Name | Sem, Programme& Batch | Email | |------------------|------------------------------|----------------------------| | Dr. Louie Frobel | Sem II B.Sc Physics, 2020-21 | louiefrobel@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | | |----|-------------------------|----------|--| | 1 | Contact hours | 32 | | | 2 | Assessment (CAE & ESE) | 3 | | | | Total | 35 | | #### I. Course Objectives: - Capable to demonstate the wave motions mathematically. - * Understanding in the principle of conservation and symmetries. - * Interpret the principles of elasticity through the study of Young's & rigidity modulus. - Learn simple principles of fluid flow and the equations governing fluid dynamics. - * Understanding of basic principles of surface tension and its application in real life #### I. Course Delivery Plan This course is designed to make students get understanding concepts of mechanical motions and mechanical properties of materials | Topics | Session No &
Date(s) | Methodology and
Duration | |---|-------------------------|-----------------------------| | Module I | | | | General wave equation, plane progressive harmonic wave | 01/03/21 | Lectures | | energy density, intensity of a wave, superposition of waves | 03/03/21 | Lectures | | beats, transverse waves in stretched strings, modes. | 04/03/21 | Lectures | | Periodic motion | 08/03/21 | Lectures | |--|----------------------------------|-----------------------------------| | simple harmonic motion and harmonic oscillator | 10/03/21 | Lectures | | energy of a harmonic oscillator, | 11/03/21 | Online | | examples of harmonic oscillator – simple and compound | | | | pendulum. | 15/03/21 | Lectures | | Theory of Damped harmonic oscillator | 17/03/21 | Lectures | | heory of forced oscillator | 18/03/21 | Lectures | | resonance, applications. | 22/03/21 | Lectures | | Internal Exam | 24/03/21 | EXAM | | Module II | | | | Angular velocity- angular acceleration- | 25/03/21 | Lectures | | angular momentum- conservation | 29/03/21 | Lectures | | Orque-moment of inertia | 31/03/21 | Lectures | | Parallel and perpendicular axes theorems | 01/04/21 | Lectures | | calculation of moment of inertia | 05/04/21 | Lectures | | Theory of flywheel. | 07/04/21 | Lectures | | Discussions and tutorials | 08/04/21 | Tutorial | | Module III | 18' 1911 | | | Basic ideas on elasticity, Young's modulus, | 12/04/21 | Lectures | | pulk modulus, rigidity modulus, | 14/04/21 | Lectures | | Poisson's ratio, | 15/04/21 | Lectures | | elations connecting various elastic constants. | 19/04/21 | Lectures | | Nork done per unit volume in a strain | 21/04/21 | Lectures | | | 21/04/21 | | | Bending of beams, bending moment, flexural rigidity | 22/04/21 | Lectures | | Bending of beams, bending moment, flexural rigidity Young's modulus – uniform and non-uniform bending | | Lectures
Lectures | | oung's modulus – uniform and non-uniform bending | 22/04/21 | Titler (s. 1923) Melajira terbiji | | oung's modulus – uniform and non-uniform bending | 22/04/21
26/04/21 | Lectures | | | 22/04/21
26/04/21 | Lectures | | Young's modulus – uniform and non-uniform bending antilever.I –section girders Determination of rigidity modulus using Static and Dynamic methods. | 22/04/21
26/04/21
28/04/21 | Lectures | Whyans | Poiseuille's method | | | |---|----------|----------| | Equation of continuity, energy possessed by a liquid, | 06/05/21 | Lectures | | Bernoulli's theorem. | 10/05/21 | Lectures | | Surface tension, surface energy, | 12/05/21 | Lectures | | excess pressure in a liquid drop and bubble, | 13/05/21 | Lectures | | Factors affecting surface tension, applications. | 17/05/21 | Lectures | | Internal Exam | 19/05/21 | EXAM | #### III. Innovative Learning Programmes | Name of Programme | Duration | Туре | Proposed Time | |--|----------|------------
---| | Hands on experiment with
instruruments , identify
concepts | 3 Days | Experiment | 4 th Week and 6 th week | # IV. Assignments and Seminars Assignments The following Assignment needs to be submitted to Google Classroom. The assignments and seminars are individual assignments. | No | Topics | Activity | Submission De | eadlines | |------------|---------------------------------|---|---|--| | Assignment | Assignment on given topic | Preparation of assignment | As the topics are covered | Submit the assignment to
Google Classroom before
dead line | | Seminar | Presentation of the given topic | Presentation of 20
minutes duration
with proper
exhibiting materials | 20 th , 23 rd and
26 th hour of
Course | Present the seminar on the given topic | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### V. Attendance (one component in class participation): | 95-100% |) | | |---------|----------------------|-----------------| | 90-95% | 4 | | | 85-90% | 3 | | | 80-85% | 2 | | | 75-80% | HYSICS · May 1 | | | <75 /8/ | Not eligible for app | pearing for ESE | #### VI. Required reading: - 1. Mechanics by J.C. Upadhayaya, Ramprasad Pub. - 2. Mechanics -D.S.Mathur, S.Chand. - 3. Advanced course in Practical Physics by D Chattopadhyay, Central Book - 4. Properties of Matter and Acoustics by Murugeshan and K. Sivaprasath, S.Chand - 5. Mechanics- Hans and Puri, TMH - 6. Classical Mechanics by J.C. Upadhyaya, Himalaya Pub. - 7. Classical Mechanics-Takwale and Puranik, TMH. - 8. Classical mechanics- K.SankaraRao, PHI. - 9. Properties of Matter by Mathur, S. Chand, - 10. Mechanics by Somnath Datta, Pearson - 11. Mechanics by H.D Young and R.A Freedman, Pearson. Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM ## St. Albert's College (Autonomous) #### PHY3CRT0119: OPTICS, LASER AND FIBER OPTICS #### Course Instructor | Name | Programme | Batch | Semester | Email | |--|---------------|---------|----------|-------------------------| | Augustine Sumesh CJ (Module 3) Dr. Nisha M S (Module 1, 2 and 4) | B.Sc. PHYSICS | 2020-21 | III | sumeshcj@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|--|----------------------------| | 1 | Contact hours | 54 (Including assignments) | | 2 | Assessment (CAE) | 3 | | | Total | 57. | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - Comprehend the fascinating area of interference - Compare Fresnel's and Fraunhofer diffraction. - Identify polarization by reflection, refraction and scattering. - Classify different types of lasers, its principle and properties, application. - Understand structure and principle of optic fibers #### IV. Course Delivery Plan | Topics | Session No & Date(s) | Methodology and
Duration | |---|----------------------|-----------------------------| | MODULE I | | | | Review of basic ideas of interference | 07/7/2020 | Lecture | | Coherent waves-Optical path and phase change | 08/7/2020 | Lecture | | superposition of waves | 10/7/2020 | Lecture | | theory of interference- | 13/7/2020 | Lecture | | intensity distribution | 14/7/2020 | Lecture | | Young's double slit experiment,
Coherence-Conditions for interference. | 15/7/2020 | Lecture | | Thin films-plane parallel film | 20/7/2020 | Lecture | | interference due to transmitted light | 22/7/2020 | Lecture | | Haidinger fringes | 27/7/2020 | Lecture | | interference in wedge shaped film | 28/7/2020 | Lecture | | r resuet Diffraction | 10/8/2020 | Lecture | |---|------------|---------| | Huygens- Fresnel theory | 11/8/2020 | Lecture | | Difference between zone plate and convex lens. | 17/8/2020 | Lecture | | Comparison between interference and diffraction | 18/8/2020 | Lecture | | diffraction pattern due to a straight edge, | 24/8/2020 | Lecture | | single silt | 25/8/2020 | Lecture | | double slit | 31/8/2020 | Lecture | | theory of plane transmission grating | 01/9/2020 | Lecture | | Dispersive power and resolving power of grating | 07/9/2020 | Lecture | | Review of basic ideas of interference | 08/9/2020 | Lecture | | Coherent waves-Optical path and phase change | 14/9/2020 | Lecture | | superposition of waves | 15/9/2020 | Lecture | | MODULE III | | | | Concept of polarization | 10/7/2020 | Lecture | | plane of polarization | 13/7/2020 | Lecture | | Types of polarized light | 17/7/2020 | Lecture | | production of plane polarized light by reflection | 24/7/2020 | Lecture | | refraction. Malu's law | 31/7/2020 | Lecture | | Polarization by double refraction | 14/8/2020 | Lecture | | calcite crystal | 21/8/2020 | Lecture | | Anisotropic crystals-optic axis | 28/8/2020 | Lecture | | Double refraction | 04/9/2020 | Lecture | | Huygens explanation of double refraction | 11/9/2020 | Lecture | | Retarders - Quarter wave plate and Half wave plate | 18/9/2020 | Lecture | | Production and Detection of plane | 25/9/2020 | Lecture | | elliptically and circularly polarized light | 02/10/2020 | Lecture | | Optical Activity- specific rotation. | 09/10/2020 | Lecture | | MODULE IV | | | | Absorption and emission of light | 21/9/2020 | Lecture | | Absorption-spontaneous emission and stimulated emission | 22/9/2020 | Lecture | | Einstein relations | 28/9/2020 | Lecture | | Population inversion | 29/9/2020 | Lecture | | Active medium-Pumping | 05/10/2020 | Lecture | | different pumping methods | 06/10/2020 | Lecture | | Resonators | 12/10/2020 | Lecture | 03/8/2020 04/8/2020 05/8/2020 10/8/2020 Lecture Lecture Lecture Lecture Pag e PA GE * ME RG EF OR MA T 2 Newton's rings applications MODULE II Fresnel Diffraction Michelson interferometer | plane mirror and confocal resonators | 13/10/2020 | Lecture | |--|------------|---------| | Metastable state | 19/10/2020 | Lecture | | Three level and Four level Laser systems | 20/10/2020 | Lecture | | Ruby Laser, He-Ne laser | 26/10/2020 | Lecture | | Semiconductor Laser | 27/10/2020 | Lecture | | Laser beam Characteristics | 02/11/2020 | Lecture | | coherence | 03/11/2020 | Lecture | | Applications of Laser | 09/11/2020 | Lecture | | Holography (qualitative study only). | 10/11/2020 | Lecture | #### V. Innovative Learning Programmes | Name of Programme | Duration | Туре | Proposed Time | |-------------------|----------|------|---------------| | | | | | #### VI. Assignments and Seminars Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission D | eadlines | |--|--------------------------------------|--------------------------------|------------------|------------------| | Assignmen Problems related to polarisation | Solution of
numerical
problems | 24/8/2020 Submit Hard copy | Submit Hard copy | | | Assignmen
t -2` | Problems-di
ffraction | Solution of numerical problems | 20/10/2020 | Submit Hard copy | | Seminar | | | | | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### VII. Attendance (one component in class participation): | <75 C O O O SIO | Not eligible for appearing for ESE | |-----------------|------------------------------------| | 75-80% | 1 | | 80-85% | 2 | | 85-90% | 3 | | 90-95% | 4 | | 95-100% | 5 | PA GE * ME RG EF OR MA T 2 Pag #### VIII. Required reading: #### Text Book: - 1. Optics by N.Subramanayam, Brijlal, M.N.Avadhanulu - 2. Semiconductor physics and optoelectronics- V.Rajendran, J.Hemaletha and M.S.M.Gibson #### References: - 1. Optics, E Hecht and AR Ganesan, Pearson - 2.Optics, 3rd edition, AjoyGhatak, TMH - 3. Optical Electronics, AjoyGhatak and K Thyagarajan, Cambridge - 4. Optics and Atomic Physics, D P Khandelwal, Himalaya Pub. House - 5.Optics, S K Srivastava, CBS Pub. N Delhi OF CANADON SOLLEGE WITH STATE OF COLLEGE WIT Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS ERNAKULAM e PA GE * ME RG EF OR MA T 2 Pag # St. Albert's College (Autonomous) ## PHY4CRT0119: SEMICONDUCTOR PHYSICS #### I. Course Instructor | Name | Programme | Batch | Semester | Email | |---|---------------|---------|----------|-------------------------| | (Module 1,3 and 4)
Augustine Sumesh
CJ (Module 2 and 3) | B.Sc. Physics | 2020-21 | IV | sumeshcj@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|--|----------------------------| | 1 | Contact hours | 54 (Including assignments) | | 2 | Assessment (CAE) | 3 | | | Total | 57 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - 1. Understand basic concept of doping, junction, and VI characteristics. - 2. Understand biasing techniques for diodes and transistors. - 3. Design basic amplifiers and oscillators. #### IV. Course Delivery Plan | Topics | Session No & Date(s) | Methodology and
Duration | |--|----------------------
-----------------------------| | MODULE I | | | | PN Junction, Depletion layer | 01/12/2020 | Lecture | | Biasing- forward and reverse | 07/12/2020 | | | Barrier potential | 8/12/2020 | | | Reverse breakdown | 14/12/2020 | | | Junction capacitance and diffusion capacitance | 15/12/2020 | | | PN Junction diode - V-I characteristics | 21/12/2020 | | | Diode current Equation, Diode testing, Ideal diode | 22/12/2020 | | | Zener diode and its reverse characteristics. | 28/12/2020 | | | Thermistors OF PH | 29/12/2020 | | | Regulated Power supplies - Zener diode voltage regulator | 04/01/2021 | | | Rectification - Half wave | 05/01/2021 | |---|--------------------------| | Full wave | 11/01/2021 | | Centre tapped, Bridge rectifier circuits | 12/01/2021 | | Filter circuits | 18/01/2021 | | Inductor Filter, Capacitor Filter | 19/01/2021 | | LC Filter, π Filter | 25/01/2021 | | Voltage multipliers – Doubler & Tripler | 26/01/2021 | | Wave shaping circuits - | 01/02/2021 | | Clipper Positive, negative and biased -s | 02/02/2021 | | Clamper Positive, negative and biased | 08/02/2021 | | MODULE II | | | Bipolar junction transistors | 04/2/2020 | | Transistor biasing, CB | 11/2/2020 | | CC, CE | 18/2/2020 | | Active, saturation and cut-off regions | 25/2/2020 | | Current gain α, β, γ and their relationships | 01/3/2021 | | | 01/3/2021 | | Leakage currents
Thermal runaway | 15/01/2021 | | DC operating point | 22/01/2021 | | AC and DC Load line | 29/01/2021 | | | | | Q-Point | 05/02/2021
12/02/2021 | | Basic principles of feedback | | | negative feedback circuits, current series
& shunt | 19/02/2021 | | Module III | | | Need for biasing-Stabilization | 26/02/2021 | | Voltage divider bias | 05/03/2021 | | Single stage transistor Amplifiers | 12/03/2021 | | CE amplifier, Decibel system, Variations | 19/03/2021 | | in Amplifier gain with frequency. | | | Oscillatory Circuits | 21/03/2021 | | LC oscillators, RC oscillators | 22/03/2021 | | Hartley Oscillator, Colpit's Oscillator | 23/03/2021 | | Astable and monostable multivibrator | 29/03/2021 | | Module IV | | | FET -characteristics, FET- Parameters.
Comparison between FET and BJT.
MOSFET | 30/03/2021 | | OP-amp- Symbol and terminals.
Characteristics of ideal OP-amp, CMRR | 01/04/2021 | | inverting, Non-inverting | 02/04/2021 | | Unity follower and Summing amplifiers | 08/04/2021 | | Types of modulation - AM, FM | 09/04/2021 | | Pulse modulation and Phase modulation (qualitative study only) | 15/04/2021 | | | . 4 | |-----|-----| | *_ | 1AT | | 111 | ORN | | Ö | Ä | | A | B | | ige | ER | | P | Σ | | Amplitude modulation- modulation index | 16/04/2021 | | |--|------------|--| | Analysis of AM wave - Sidebands | 22/04/2021 | | | bandwidth- AM Demodulation. | 23/04/2021 | | #### V. Innovative Learning Programmes | Name of Programme | Duration | Туре | Proposed Time | |-------------------|----------|------|---------------| | | | | | #### VI. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission Deadlines | | |--------------------|--|--------------------------------------|----------------------|------------------| | Assignmen
t -1 | Problems
related to
Kirchhoff's
law | Solution of
numerical
problems | 20-01-21 | Submit Hard copy | | Assignmen
t -2` | Problems-re
ctifier | Solution of
numerical
problems | 3-2-21 | Submit Hard copy | | Seminar | | | | | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### VII. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | 1 | | <75 | Not eligible for appearing for ESE | VIII. Required reading: Text Book: 1. Basic Electronics-B. L. Theraja #### 2. A Text Book of Applied Electronics-R.S.Sedha OLLEGE #### References: 1. Principles of electronics, VK Mehta, S Chand 2. Basic Electronics(7thEdition), Malvino and Bates, TMH 3. Electronics Fundamentals and Applications- D. Chattopadhyay and P.G.Rakshit, New Age International Publishers. 4. Electronics: Fundamentals of Analog circuits, Thomas L. Floyd, David Buchla, Prentice Hall 5. Electronic Devices and Circuit Theory, Robert Boylestad, Louis Nashelsky, Prentice Hall (Ja mm Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM ## St. Albert's College (Autonomous) #### PHY5CRT0219 - CLASSICAL AND QUANTUM MECHANICS #### Course Instructor | Name | Sem, Programme & Batch | Email | | |-------------------|------------------------|--------------------------|---| | Dr. Sajeesh T. H. | B.Sc. Physics semester | sajeeshth@alberts.edu.in | - | #### II. Duration of Course: | No | Activity | Duration | |----|---|----------------------------| | 1 | Contact hours | 50 (Including assignments) | | 2 | Assessment (CAE) | 2 | | | Total | 52 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - · Distinguish various types of constraints in a mechanical problem. - · Understand different analytical mechanics for solving problems. - · Explain photoelectric effect and Compton effect. - · Evaluate eigen values and eigen functions - · Solve Schrodinger equation for particle in a box. #### IV. Course Delivery Plan The teaching methods include lectures, discussions, live practical sessions using mobile aaps. | Topics | Session No & Date(s) | Methodology and
Duration | |--|----------------------|--------------------------------------| | Module I | | | | Constraints Degrees of freedom generalized co-ordinates, | 2-6-2021 | Recorded video class | | principle of virtual work D'Alembert's principle. | 4-6-2021 | Online Lecture/ Recorded video class | | Lagrange's equations Application of Lagrangian (L.H.Q) | 7-6-2021 | Online Lecture/Recorded video class | | Planetary motion Simple Pendulum | 9-6-2021 | Online Lecture/Tutorial | | Hamilton's Canonical equ of thotion | 11-6-2021 | Online Lecture | | Advantages of Hamilton's method | 14.6.2021 | Online | |---|----------------------------------|--| | Applications Linear Harmonic oscillator
Simple pendulum | 14-6-2021 | Lecture/Tutorial/Google classroom | | Hamilton's Principle of Least Action | 16-6-021,18-6-20
21 | Online Lecture | | Derivation of Lagrange's equation from Hamilton's Principle. | 19-6-2021 | Online Lecture | | Module II | | | | Failure of classical physics
Black Body radiation
Planck's radiation law | 21-6-2021 | Online Lecture | | Photoelectric effect
Einstein's explanation | 23-6-2021 | Online Lecture | | Compton effect
Bohr's correspondence principle | 25-6-2021 | Online Lecture | | Wave particle Dualism Dual nature of matter De Broglie hypothesis | 28-6-2021 | Online Lecture | | Davisson-Germer Experiment | 5-7-2021 | Online Lecture | | De Broglie waves | 7-7-2021 | Online Lecture | | Wave packet, Group and phase velocities | 9-7-2021 | Online Lecture | | Linear vector space-,Hilbert space,
Orthogonality | 12-7-2021 | Online Lecture | | Linear operator, Eigen functions and eigen values | 14-7-2021 | Online Lecture | | Hermitian operator | 16-7-2021 | Online Lecture | | Postulates of Quantum Mechanics | 19-7-20121
21-7-2021 | Online Lecture | | wave function, Operators, Expectation value, Eigen value, | 23-7-2021 | Seminar | | Time development- Simultaneous measurability | 26-7-2021 | Online lecture | | General uncertainty relation. | 28-7-2021 | Seminar | | Assessment test | 31-7-2021 | Online | | Module III | | | | Time dependent Schrödinger equation | 2-8-2021 | Online | | interpretation of wave function Probability density Probability current density | 4-8-2021 | Seminar | | Extension to three dimensions | 6-8-2021
9-8-2021
11-8-221 | Online
Lecture/Tutorial/Google
classroom | | Timeindependent Schrödinger equation | 13-8-2021 | Seminar | Junim - ST ALBE | Admissibility Conditions Of Wave function | 16-8-2021 | Seminar | |---|--|---------| | general properties of one dimensional
Schrödinger equation | 18-8-2021 | Online | | particle in a box | 20-8-2021 | Online | | one dimensional barrier problem square potential barrier | 23-8-2021 | Online | | Assessment | 25-8-2021 | Online | | Problems solving tutorials | 27-8-2021
30-8-2021
1-9-2021
3-9-2021
6-9-2021
8-9-2021 | Online | #### V. Innovative Learning Programmes | Name of Programme | Duration | Type | Proposed Time | |-------------------|-------------|------------------|----------------------------------| | Flipped Class | 10 sessions | Seminar/Tutorial | Each module application problems | # VI. Assignments and Seminars Assignments | No | Topics | Activity | Submission Deadlines | |----|--|-----------------|--------------------------------------| | 1 | Assignment
on
Lagrangian
and
Hamilton
mechanics | Problem solving | one week after ostin the assignment. | | 2 | Quantum
mechanics | problems in QM | End of second
module | #### VII. Attendance (one component in class participation): | 95-100% | 5 | |---------------|---| | 90-95% | 4 | | 85-90% | 3 | | 80-85% OF PAN | 2 | |
75-80% | 1 | #### VIII. Required reading: #### Text Book: - 1. Classical Mechanics by J.C. Upadhyaya. Himalaya Pub. - 2. Concepts of Modern Physics- Arthur Beiser, TMH #### References: - 1. Concepts of Modern Physics- Arthur Beiser, TMH - 2. A Textbook of Quantum Mechanics- G Aruldhas- (2nd Edition)- PHI - 3. Classical Mechanics-Takwale and Puranik, TMH. - 4. Classical mechanics- K.SankaraRao, PHI. - 5. Introductory Quantum Mechanics- RI Liboff, Pearson - 6. Quantum Physics- Gasiorowicz, John Wiely - 7. Quantum Mechanics- Griffith, Pearson OF PHI COLLEGE Dr. LOUIE FROBEL PG ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS ERNAKULAM # St. Albert's College (Autonomous) #### PHY5CRT0319: DIGITAL ELECTRONICS AND PROGRAMMING #### I. Course Instructor | Name | Sem, Programme & Batch | Email | |----------------------|-------------------------------------|----------------------------| | Dr. Louie Frobel P G | B.Sc. Physics semester V
2020-21 | louiefrobel@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|---|----------------------------| | 1 | Contact hours | 50 (Including assignments) | | 2 | Assessment (CAE) | 2 | | | Total | 52 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 2 | #### III. Course Objectives: - To Explain basic logic operations. - To Understand Boolean algebra - To Understand the fundamentals of Digital circuits. - · To Familiarized with the basics of Python programing language #### IV. Course Delivery Plan The teaching methods include lectures, discussions, live practical sessions using mobile aaps. | Topics | Session No & Date(s) | Methodology and
Duration | |---|----------------------|-----------------------------| | Module I | | | | Basic gates NOT, OR, AND. Universal
Logic Gates- NOR, NAND. XOR and
XNOR Gates. | 2-6-2021 | Online Lecture | | Rules and Laws of Boolean algebra. Duality theorem De Morgan's Theorems. | 4-6-2021 | Online Lecture | | SOP and POS. Minterms and Maxterms | | | |--|--|--------------------| | | 9-6-2021 | Online Lecture | | Standard SOP and Standard POS-
Conversion between
Standard SOP & Standard POS. | 11-6-2021 | Online Lecture | | Karnaugh Map | 14-6-2021 | Online Lecture | | Karnaugh Map simplification | 16-6-021,18-6-20
21 | Online Lecture | | Module 1 assessment test 1 | 19-6-2021 | Google classroom | | Module II | | | | Half Adder and Full Adder | 21-6-2021 | Online Lecture | | Half and Full subtractor | 23-6-2021 | Online Lecture | | 4-bit parallel Adder/Subtractor. | 25-6-2021 | Online Lecture | | Multiplexer and De-multiplexer | 28-6-2021 | Online Lecture | | Encoder & Decoder | 5-7-2021 | Online Lecture | | Assessment test 2 | 7-7-2021 | Online Lecture | | Flip-Flops, RS Flip flops | 9-7-2021 | Online Lecture | | Clocked RS Flipflops | 12-7-2021 | Online Lecture | | Master Slave JK FF | 14-7-2021 | Online Lecture | | OFF, T Flip-flop | 16-7-2021 | Online Lecture | | Buffer registers- Shift | 19-7-20121 | Online Lecture | | register- SISO and SIPO | 21-7-2021 | | | Counters- Binary ripple counter | 23-7-2021 | Seminar | | D/A converters (Ladder type) | 26-7-2021 | Online lecture | | A/D Converter (Counter type). | 28-7-2021 | Seminar | | Assessment test 3 | 31-7-2021 | Online | | Module III | | | | Basic C++ program structure | 2-8-2021 | Online | | comments-data | 4-8-2021 | Seminar | | arithmetic, relational, logical and assignment operators | 6-8-2021
9-8-2021
11-8-221 | Seminar | | f, if-else and else if | 13-8-2021 | Seminar | | do while - case | 16-8-2021 | Seminar | | oops and nested loops | 18-8-2021 | Online | | Arrays | 20-8-2021 | Online | | Functions-basic ideas | 23-8-2021 | Online | | Objects and classes | 25-8-2021 | Online | | Programming - basic ideas | 27-8-2021
30-8-2021
1-9-2021
3-9-2021
6-9-2021 | Through mobile app | # Page PAGE * MERGEFORMAT 6 #### V. Innovative Learning Programmes | Name of Programme | Duration | Type | Proposed Time | |-------------------------|----------|-----------------------|--------------------------| | Thalsamayam oru Coding. | 6 Days | Experiential Learning | End of the 3rd
Module | # VI. Assignments and Seminars Assignments | No | Topics | Activity | Submission Deadlines | |----|---------------------------------|---|--------------------------------------| | 1 | Assignment
on Logic
gates | Answer the given questions based on logic gates | one week after ostin the assignment. | | 2 | Based on
logic
circuits | minimise the
logic
expressions
using boolean
algebra and K
map | End of second module | #### VII. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | 1 | | <75 | Not eligible for appearing for ESE | #### VIII. Required reading: Digital principles and applications, Malvino, Leach and Saha (6th Edition) TMH Digital Electronics- Sedha, S Chand Object oriented programming in Turbo C++ - Robert Lafore (Galgotia Pub.) Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM # Department of Physics St. Albert's College (Autonomous) #### PH5CRT0517: ELECTRICITY AND ELECTRODYNAMICS #### I. Course Instructor | Name | Sem, Programme& Batch | Email | |----------------------|-----------------------------|-------------------------| | Augustine Sumesh C J | Sem V B.Sc Physics, 2020-21 | sumeshcj@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | | |----|-------------------------|----------|--| | 1 | Contact hours | 42 | | | 2 | Assessment (CAE & ESE) | 4 | | | | Total | 46 | | #### I. Course Outcomes: - · Analyse AC circuits and networks using network theorems. - Explain different laws in electrostatics and magnetostatics - · Apply Maxwell's equations to deduce wave equation and electromagnetic field energy. - Explain different thermoelectric effects. - Derive Maxwell's equation and apply boundary conditions for free space. #### I. Course Delivery Plan This course is designed to make students get familiar with Electricity, electro statics and magnetostatics. They get an understanding on the underlying physics on these topics. | Topics | Session No &
Date(s) | Methodology and
Duration | |---|-------------------------|-----------------------------| | MODULE I | | | | EMF induced in a coil rotating in a magnetic field | 8 Jun 20 | LECTURES | | AC applied to resistive, inductive and capacitance circuits | 9 Jun 20 | LECTURES | | AC applied to LR and RC circuits | 11 Jun 20 | LECTURES | | Analysis of LCR series circuits | 15 Jun 20 | LECTURES | | LCR parallel resonant circuit | 16 Jun 20 | LECTURES | | Power in ac circuits - Wattless current choke coil | 18 Jun 20 | LECTURES | | transformer on no load- skin effect. | 22 Jun 20 | LECTURES | |--|-----------|----------| | Ideal voltage source and current source - Superposition theorem | 23 Jun 20 | LECTURES | | Thevenin's theorem | 25 Jun 20 | LECTURES | | Norton's theorem | 29 Jun 20 | LECTURES | | Maximum power transfer theorem., Reciprocity theorem | 30 Jun 20 | LECTURES | | TUTORIAL | 2 Jul 20 | TUTORIAL | | MODULE II | | | | Growth and decay of current in an LR circuit | 6 Jul 20 | LECTURES | | Charging and discharging of a capacitor through a resistor | 7 Jul 20 | LECTURES | | Growth and decay of charge in an LCR circuit. | 9 Jul 20 | LECTURES | | Seebeck effect - Laws of thermo emf - Peltier effect | 13 Jul 20 | LECTURES | | Thomson effect- Thermoelectric diagrams -Thermocouple | 14 Jul 20 | LECTURES | | Explanation of thermoelectric effects based on electron theory. | 16 Jul 20 | LECTURES | | INTERNAL EXAM | 21 Jul 20 | EXAM | | MODULE III | | | | Fundamental theorems of divergence and curl | 23 Jul 20 | LECTURES | | Electric field - Continuous charge distribution | 27 Jul 20 | LECTURES | | Divergence and curl of electrostatic field | 28 Jul 20 | LECTURES | | Gauss's law and applications: | 6 Aug 20 | LECTURES | | solid sphere, infinite wire, infinite plane sheet | 10 Aug 20 | LECTURES | | Electric potential - Poisson's and Laplace's equations | 11 Aug 20 | LECTURES | | Potential of a localized charge distribution | 13 Aug 20 | LECTURES | | Electrostatic boundary conditions | 17 Aug 20 | LECTURES | | work and energy in electrostatics – The work done to move a charge | 18 Aug 20 | LECTURES | | Energy of a point charge distribution and continuous charge distribution- Basic properties a conductor | 20 Aug 20 | LECTURES | | Lorentz Force law- Biot- Savart law | 24 Aug 20 | LECTURES | |--|-----------|----------| | Divergence and curl of B- Applications of Amperes' law: | 25 Aug 20 | LECTURES | | long straight wire, infinite plane, solenoid | 27 Aug 20 | LECTURES | | Comparison of electrostatics and magnetostatics | 31 Aug 20 | LECTURES | | Magnetic vector potential | 1 Sep 20 | LECTURES | | Magnetostatics boundary conditions | 3 Sep 20 | LECTURES | | Electromagnetic induction- Faraday's law | 7 Sep 20 | LECTURES | | TUTORIAL | 8 Sep 20 | TUTORIAL | | MODULE IV | 7 | | | Maxwell's equations | 10 Sep 20 | LECTURES | | Boundary conditions for free space | 14 Sep 20 | LECTURES | | Continuity equations- | 15 Sep 20 | LECTURES | | Poynting's theorem | 17 Sep 20 | LECTURES | | Wave equations | 21 Sep 20 | LECTURES | | Electromagnetic wave in vacuum -
 22 Sep 20 | LECTURES | | Wave equation for E and B | 24 Sep 20 | LECTURES | | Monochromatic plane waves- Energy of electromagnetic waves | 28 Sep 20 | LECTURES | | INTERNAL EXAM | 29 Sep 20 | EXAM | #### III. Innovative Learning Programmes | Name of Programme | Duration | Туре | Proposed Time | |--|----------|---------------------|----------------------| | Estimating the power consumption and power optimisation in house | 2 Days | Survey and analysis | 2 nd Week | # IV. Assignments and Seminars Assignments The following Assignment needs to be submitted to Google Classroom. The assignments and seminars are individual assignments. No Topics /* Activity Submission Deadlines | Assignment | Assignment on given topic | Preparation of assignment | As the topics are covered | Submit the assignment to
Google Classroom before
dead line | |------------|---------------------------------|---|---|--| | Seminar | Presentation of the given topic | Presentation of 20
minutes duration
with proper
exhibiting materials | 20 th , 23 rd and
26 th hour of
Course | Present the seminar on the given topic | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. V. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | 1 | | <75 | Not eligible for appearing for ESE | #### VI. Required reading: - 1. Introduction to Electrodynamics, David J Griffiths . - 2. Electricity and Magnetism, R. Murugeshan - 3. Fundamentals of Magnetism and Electricity, D.N Vasudeva S Chand - 4. Principles of Electromagnetics, Mathew N.O Sadiku- 4 th Ed., Oxford - 5. Electricity and Magnetism, KK Tewari- S Chand - 6. Electricity and Electronics, Saxena, Arora and Prakash- Pragati Prakashan - 7. Classical Electromagnetism, Jerrold Franklin-Pearson - 8. Electromagnetic Fields and Waves, KD Prasad- Satya Prakashan - 9. Field and wave Electromagnetics, David K Cheng-Pearson. Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS, ERNAKULAM ## St. Albert's College (Autonomous) #### PHY6CBT0117: COMPUTATIONAL PHYSICS #### I. Course Instructor | Name | Programme | Batch | Semester | Email | |-----------------|---------------|-------|----------|---------------------| | Dr. T.H.Sajeesh | B.Sc. Physics | 2 | VI | thsajeesh@gmail.com | #### II. Duration of Course: | No | Activity | Duration | |----|---|----------------------------| | 1 | Contact hours | 54 (Including assignments) | | 2 | Assessment (CAE) | 3 | | | Total | 37 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - Discuss and compare the methods to solve algebraic and transcendental equations - Explain curve fitting and interpolation. - Discuss various numerical integration and differentiation methods. - Ability to solve nonlinear problems using numerical methods - Application of numerical skill to solve differential equations #### IV. Course Delivery Plan | Topics | Session No & Date(s) | Methodology and
Duration | |------------------------------|----------------------|-----------------------------| | MODULE I | | | | Bisection Method | 04/12/2020 | Lectures | | Regula-Falsi Method | 07/12/2020 | Lectures | | Fixed point iteration method | 11/12/2020 | Lectures | | Newton Raphson method | 14/12/2020 | Lectures | | Secant method | 18/12/2020 | Lectures | | Rate of convergence | 21/12/2020 | Lectures | | comparisons of these Methods | 22/12/2020 | Lectures | | Newton Raphson method (two equation solution) | 28/12/2020 | Lectures | |---|------------|----------| | Tutorial | 01/1/2021 | Lectures | | Gauss elimination method | 04/1/2021 | Lectures | | pivoting strategies | 11/1/2021 | Lectures | | Gauss-Jordan method | 15/1/2021 | Lectures | | LU Factorization | 22/1/2021 | Lectures | | Iterative methods | 29/1/2021 | Lectures | | Jacobi method | 01/2/2021 | Lectures | | Gauss-Seidel method | 05/2/2021 | Lectures | | Tutorial | 08/2/2021 | Lectures | | MODULE II | | | | Least square method of linear fit | 07/12/2020 | Lectures | | Problem solving with LSM linear fit | 14/12/2020 | Lectures | | Least square method of parabola | 21/12/2020 | Lectures | | problem solving with LSM parabola | 28/12/2020 | Lectures | | LSM for polynomial | 04/1/2021 | Lectures | | LSM for exponential | 11/1/2021 | Lectures | | Tutorial | 18/1/2021 | Lectures | | Finite difference operators: forward and backward | 25/1/2021 | Lectures | | shift, average and differential operators | 01/2/2021 | Lectures | | Newton forward difference interpolation | 08/2/2021 | Lectures | | Lagrange interpolation | 15/2/2021 | Lectures | | divide difference interpolation | 22/2/2021 | Lectures | | Problem solving | 03/3/2021 | Lectures | | Tutorial | 08/3/2021 | Lectures | | Internal exam | 15/3/2021 | Online | | MODULE III | | | | Numerical Differentiation formulae | 12/2/2021 | Lectures | | Maxima and minima of a tabulated function | 15/2/2021 | Lectures | | Newton- Cote general quadrature formula | 19/2/2021 | Lectures | | Trapezoidal rule, Simpson's 1/3 and 3/8 rule | 26/2/2021 | Lectures | | Taylor Series Method, Picard's method | 01/3/2021 | Lectures | | Euler's and modified Euler's method | 05/3/2021 | Lectures | | Runge Kutta methods for 1st order | 08/3/2021 | Lectures | | Runge Kutta methods for 2nd order | 12/3/2021 | Lectures | | Tutorial | 19/3/2021 | Lectures | | Internal Exam | 26/3/2021 | Online | #### V. Innovative Learning Programmes | Name of Programme | Duration | Type | Proposed Time | |--|----------|------------|---------------| | Development of
Algorithms | 1 day | Experiment | 4th Week | | Use the methods to fit experimental Data | 2 days | Discussion | 6th Week | #### VI. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission D | eadlines | |----------------|------------------------------------|---|---|--| | Assignment -1 | Assignment on given topic | Preparation of assignment | As the topics are covered | Submit the assignment
to Google Classroom
before dead line | | Assignment -2` | Assignment on | Preparation of | | Submit Hard copy | | | given topic | assignment | As the topics are covered | | | Seminar | Presentation of
the given topic | Presentation of
20 minutes
duration with
proper
exhibiting
materials | 20 th , 23 rd
and 26 th hour
of Course | Present the seminar on the given topic | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. ### VII. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | 1 | | <75 | Not eligible for appearing for ESE | # Page PAGE * MERGEFORMAT 6 #### VIII. Required reading: #### Text Book: - 1. Numerical Methods, Balagurusamy, TMH - 2. Numerical Methods for Scientists and Engineers- K Sankara Rao- PHI - 3. Introductory Numerical Methods, S S Sastry, PHI. PLEGE OF Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM # St. Albert's College (Autonomous) #### PHY6CRT0419: SOLID STATE PHYSICS #### i. Course Instructor | Name | Programme | Batch | Semester | Email | |------------------------------|---------------|---------|----------|-------------------------------| | Dr.Sumithra Sivadas
Menon | B.Sc. Physics | 2020-23 | VI | sumitrasivadas@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|---|----------------------------| | 1 | Contact hours | 66 (Including assignments) | | 2 | Assessment (CAE) | 3 | | | Total | 69 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - Have a basic knowledge of crystal systems and spatial symmetries. - Account for how crystalline materials are studied using diffraction, including concepts like form factor, structure factor and scattering amplitude. - Know the principles of structure determination by diffraction. - Understand the concept of reciprocal space and be able to use it as a tool. - Know what phonons are, and be able to perform estimates of their dispersive and thermal properties. - Calculate thermal and electrical properties in the free electron model. - Understand semiconducting, dielectric and magnetic properties of materials - Have a knowledge of superconductivity #### IV. Course Delivery Plan | Topics | Session No &
Date(s) | Methodology and
Duration | |---|-------------------------|-----------------------------| | MODULE I | | | | Crystal Structure | | | | Solid State, Crystalline, Polycrystalline and Amorphous materials | 02-12-2020 | Lectures | | Crystal Lattice, Periodicity, Translation
Vectors | 03-12-2020 | Lectures |
 Unit Cell, Basis OT OF PHY | 04-12-2020 | Lectures | | Symmetry operations | 07-12-2020 | Lectures | | Bravais Lattice in 2 and 3 dimensions | 09-12-2020 | Lectures | |---|---------------|----------| | Miller indices | 10-12-2020 | Lectures | | Inter planar spacing | 11-12-2020 | Lectures | | Simple crystal structures-hcp, fcc | 14-12-2020 | Lectures | | Bec and simple cubic | 16-12-2020 | Lectures | | Structures of NaCl, diamond and ZnS | 17-12-2020 | Lectures | | X-ray diffraction from crystals | 18-12-2020 | Lectures | | Bragg's law, Powder method | 31-12-2020 | Lectures | | Reciprocal Lattice-properties | 01-01-2021 | Lectures | | Reciprocal Lattice to sc, bcc and fcc | 04-01-2021 | Lectures | | Bragg's law in reciprocal lattice | 06-01-2021 | Lectures | | MODULE II | | | | Bonding in Solids | | | | Inter-atomic forces, ionic bonding | 11-01-2021 | Lectures | | Bond dissociation and cohesive energy | 13-01-2021 | Lectures | | Madelung energy | 14-01-2021 | Lectures | | Covalent bonding | 15-01-2021 | Lectures | | Metallic bonding | 18-01-2021 | Lectures | | Hydrogen bonding | 20-01-2021 | Lectures | | Van der Waal's bonding (basic ideas only) | 21-01-2021 | Lectures | | Free Electron Theory and Elementary | | | | Band Theory | 1 1 2 2 2 2 2 | | | Free electron gas in one dimension | 25-01-2021 | Lectures | | Three dimension | 27-01-2021 | Lectures | | Electronic specific heat | 28-01-2021 | Lectures | | Band Theory | 29-01-2021 | Lectures | | Bloch Theorem | 01-02-2021 | Lectures | | Kronig-penney model (derivation not expected) | 03-02-2021 | Lectures | | Energy-wave vector relations | 04-02-2021 | Lectures | | Different zone schemes | 05-02-2021 | Lectures | | Velocity and effective mass of electrons | 08-02-2021 | Lectures | | Distinction between metals, insulators and semiconductors | 10-02-2021 | Lectures | | Semiconducting Properties of Materials | | | | Intrinsic and Extrinsic Semiconductors | 12-02-2021 | Lectures | | Drift Velocity | 15-02-2021 | Lectures | | Mobility and Conductivity of Intrinsic
Semiconductors | 17-02-2021 | Lectures | | Carrier Concentration of Intrinsic
Semiconductors | 18-02-2021 | Lectures | | Fermi Level for Intrinsic
Semiconductors | 19-02-2021 | Lectures | | Carrier Concentration for Extrinsic | 22-02-2021 | Lectures | | Conductivity and Fermi Level for
Extrinsic Semiconductor | 24-02-2021 | Lectures | | Extrinsic demiconductor | | | | Direct and Indirect Band Gap | 26-02-2021 | Lectures | |--|--|------------| | Principles of LED | 01-03-2021 | Lectures | | Principles of Photo Diodes | 03-03-2021 | Lectures | | Module III | | | | Dielectric Properties of Materials | | | | Polarization and Susceptibility | 04-03-2021 | Lectures | | Local Field | 05-03-2021 | Lectures | | Dielectric Constant and Polarizability | 08-03-2021 | Lectures | | Sources of Polarizability | 10-03-2021 | Lectures | | Clausius-Mossoti Relations, Piezo
Electricity | 11-03-2021 | Lectures | | Magnetic Properties of Materials | | | | Response of Materials to Magnetic Field | 12-03-2021 | Lectures | | Classification of Magnetic Materials | 15-03-2021 | Lectures | | Langevin's Classical Theory of | 17-03-2021 | Lectures | | Diamagnetism and Paramagnetism | | | | Ferro Magnetism | 18-03-2021 | Lectures | | Weiss Theory | 19-03-2021 | Lectures | | Domain Theory | 22-03-2021 | Lectures | | Antiferro Magnetism and
Ferimagnetism | 24-03-2021 | Lectures | | Superconductivity | | | | Origin of Superconductivity | 25-03-2021 | Lectures | | Response of Magnetic Field | 26-03-2021 | Lectures | | Meissner Effect | 29-03-2021 | Lectures | | Super Current and Penetration Depth | 01-04-2021 | Lectures | | Critical Field and Critical Temperature | 02-04-2021 | Lectures | | Type I and Type II Superconductors | 05-04-2021 | Lectures | | Thermodynamic and Optical Properties | 07-04-2021 | Lectures * | | Isotope Effect, Josephson Effect and
Tunnelling | 08-04-2021 | Lectures | | SQUID BCS Theory | 09-04-2021 | Lectures | | Cooper Pairs | 12-04-2021 | Lectures | | Existence of Band Gap | 14-04-2021 | Lectures | | | And the second s | | #### V. Innovative Learning Programmes | Name of Programme | Duration | Туре | Proposed Time | |-------------------|----------|--|---------------| | | | THE DATE OF THE PARTY PA | | #### VI. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submis | sion Deadlines | |---------------|---|--------------------------------------|------------|------------------| | Assignment -1 | Assignment on given topic | Preparation of assignment | 16-12-2020 | Submit Hard copy | | Assignment -2 | Assignment on given topic | Preparation of assignment | 09-04-2021 | Submit Hard copy | | Seminar | Power Point
Presentation
on given topic | Presentation of prepared power point | 26-02-2021 | Submit Hard copy | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### VII. Attendance (one component in class participation): | <75 | Not eligible for appearing for ESE | |---------|------------------------------------| | 75-80% | 1 | | 80-85% | 2 | | 85-90% | 3 | | 90-95% | 4 | | 95-100% | 5 | #### VIII. Required reading: #### Text Book: - 1. Solid State Physics by Puri and Babbar - 2. Heat and Thermodynamics-Brijlal & Subrahmanyam (S.Chand)) #### References: - 1. Solid State Physics, M. A. Wahab, (2nd Edition), Narosa - 2. Introduction to Solid State Physics, Charles Kittel, (7th Edition), Wiley - 3. Crystallography applied to solid state physics, AR
Verma, ON Srivastava, New age - 4. Solid State Physics, AJ Dekker-Macmillian - 5. Solid state Physics, NW Ashcroft, ND Mermin- Cengage Learning - 6. Elementary Solid-State Physics, M Ali Omer, Pearson - 7. Solid State Physics, R L Singal, KNRN & Co. - 8. Solid State Physics, S O Pillai, New Age # 建 # St. Albert's College (Autonomous) #### PHY6CRT0219: RELATIVITY ND SPECTROSCOPY #### . Course Instructor | Name | Programme | Batch | Semester | Email | |---|---------------|--------------------------------|----------|--| | Augustine Sumesh
C J. (Module 1 and
4)
Dr. Sajeesh T H
(Module 2 and 3) | B.Sc. Physics | 2 019-22
2020-21 | VI | sumeshcj@alberts.edu.in sajeeshth@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|---|----------------------------| | 1 | Contact hours | 72 (Including assignments) | | 2 | Assessment (CAE) | 7 | | | Total | 79 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - Understand Special Theory of Relativity - Analyze Lorentz transformnation equations - · Apply relativistic variations in mass, length and time - · Describe various atom models - Explain Zeeman effect - Familiarize the various regions of electromagnetic spectra and the spectroscopic technique outlaying in each region. - Classify molecule based on the principle moment of inertia. #### IV. Course Delivery Plan | Topics OF PT. OF PT. S. | Session No &
Date(s) | Methodology and
Duration | |---|-------------------------|-----------------------------| | MODULE I - Special Theory of Relativity | 17-11-21 | | | Inertial and non inertial frames of reference | 18-11-21 | | | Galilean transformation | 24-11-21 | | | Significance of Michelson-Morley experiment | 25-11-21 | | |---|-------------------|---| | Postulates of Special Theory of Relativity | 1-12-21 | | | Lorentz transformation. | 2-12-2022 | | | Derivation of Lorentz transformation | 8-12-22 | • | | Spatial contraction | 9-12-22 | | | Spatial contraction -problems | 15-12-22 | | | Time dilation | 16-12-22 | | | Time dilation - problems | 22-12-22 | | | composition of velocities | 23-12-22 | | | Velocity addition -problems | 5-1-22 | | | mass of moving particle | 6-1-22 | | | Equivalence of mass and energy | 12-1-22 | 1 | | Mass – energy relation -applications | 13-1-22 | | | Introductory concept of general theory of | 19-1-22 | | | relativity | | | | composition of velocities | 20-2-22 | | | MODULE II - Atomic Spectroscopy | | | | Introduction to spectroscopy | 17-11-2021 | | | Electromagnetic spectrum | 17-11-2021 | | | Characterisation of wave | 17-11-2021 | | | quantum theory-review | 12-1-22 | | | early atom models. | 18-1-22 | | | early atom models | 19-1-22 | | | Bohr model | 25-1-22 | | | electron spin and magnetic moment | 26-1-22 | | | Exclusion principle | 1-2-22 | | | Stern-Gerlach experiment | 2-2-22 | | | Vector atom model | 8-2-22 | | | quantum numbers | 9-2-22 | | | Spin orbit iteraction | 15-2-22 | | | Total angular momentum and LS coupling | 16-2-22 | | | fine structure of Sodium D lines | 22-2-22 | | | Zeeman effect | 22-2-22 | | | Anomalous Zeeman effect | 22-2-22 | | | quantum mechanical explanation for | 23-2-22 | | | anomalous Zeeman effect | | | | Paschen-Back effect | 23-2-22 | | | Problems | 23-2-22 | | | Module III - Molecular Spectrocopy | | | | Molecular energy levels | 18-11-21 (Special | | | AND | Class) | | | Interaction of em radiation with molecules | 23-11-21 | | | Electronic operay | 24-11-21 | | | rotational energy | 30-11-21 | | | vibrational energies | 1-12-21 | | |---|----------|--------| | | | | | rotational spectra | 2-12-21 | | | explanation in terms of rigid rotator | 7-12-21 | | | model | | | | vibrational energy levels | 8-12-21 | | | explanation in terms of harmonic oscillator | 14-12-21 | | | problems | 15-12-21 | | | Electronic energy levels of atoms | 21-12-21 | | | Fluorescence | 22-12-21 | | | Phosphorescence | 23-12-21 | | | Raman effect | 28-12-21 | online | | experimental arrangement and result | 29-12-21 | online | | classical theory | 4-1-22 | | | Failiure of classical theory | 5-1-22 | | | quantum theory of Raman effect. | 5-1-22 | | | Application of spectroscopy | 11-1-22 | | | Problems | 12-1-22 | | | Module III – NMR and ESR | | | | NMR Spectroscopy- Basic principles | 23-2-22 | | | NMR Spectroscopy instrumentation | 23-2-22 | | | Medical applications of NMR. | 23-2-22 | | | ESR Spectroscopy- Basic principles | 24-2-22 | | | ESR Spectroscopy- instrumentation | 24-2-22 | | # V. Innovative Learning Programmes | Name of Programme | Duration | Type | Proposed Time | |-------------------|----------|------|---------------| | | | | | ## VI. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission | Deadlines | |-------------------|-------------------------------|----------------------------------|------------|------------------| | Assignmen
t -1 | Problems related to entropy * | Solution of numerical problems * | 6-12-21 | Submit Hard copy | Thomas | | 4 | |------|-------| | *_ | RMAT | | GE | E | | e PA | MERGE | | Page | Z | | Assignmen
t -2` | Problems-R
elativity | Solution of
numerical
problems | 17-1-22 | Submit Hard copy | |--------------------|-----------------------------|--------------------------------------|---------|------------------| | Seminar | Early atom model, tutorials | | 12-2-22 | | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. VII. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | 1 | | <75 | Not eligible for appearing for ESE | #### VIII. Required reading: #### Text Book: - Molecular structure and spectroscopy, Aruldas 2nd ed. EEE. - 2. Modern Physics, Kenneth S Krane (2nd Edition) Wiley. - 3. Concepts of modern Physics, Arthur Beiser (6th Edition) SIE #### References: - 1. Spectroscopy: Straughan and Walker (Vol.1) John Wiley - 2. Fundamentals of Molecular Spectroscopy: CN Banwell -(4th edition) TMH. - 3. Introduction to Atomic Spectra, HE White, TMH - 4. Elements of spectroscopy, Guptha, Kumar and Sharma (Pragathi Prakash) - 5. Special Relativity-Resnick, (Wiley) - 6. Mechanics D.S.Mathur (S.Chand). - 7. Mechanics by J.C. Upadhayaya (Ramprasad) - 8. Semiconductor physics and optoelectronics- V Rajendran, J Hemaletha and M S M Gibson. OF Dr. LOUIE FROBEL P.G. ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM # Department of Physics St. Albert's College (Autonomous) PHY6CRT0317: NUCLEAR, PARTICLE PHYSICS AND ASTROPHYSICS #### Course Instructor | Name | Sem, Programme& Batch | Email | |-----------------|------------------------------|----------------------------| | Dr.Louie Frobel | Sem VI B.Sc Physics, 2020-21 | louiefrobel@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|-------------------------|------------------| | 1 | Contact hours | 51 | | 2 | Assessment (CAE & ESE) | 2 | | - | Total | 3011011011011011 | ### I. Course Objectives: - Learn radioactivity, its applications and nuclear reactors. - * Gain knowledge on the fundamentals of elementary particle physics. The students should know about the symmetries and quantum numbers of these particles. - Introductory knowledge about Star formation and stellar evolution, Basic ideas on the celestial objects such as Neutron stars, Black holes and Supernova explosion. - Learn about the detectors of nuclear radiations- the Geiger-Mueller counter, the scintillation counter, the photo-multiplier tube, the solid state and semiconductor detectors #### I. Course Delivery Plan This course is designed to make students get understanding and perform numerical analysis and integration. | Topics | Session No &
Date(s) | Methodology and
Duration | |--|-------------------------|-----------------------------| | MODULE | I | | | Nuclear composition, Nuclear properties: Nuclear radii | 02/12/20 | Lectures | | Binding energy | 03/12/20 | Lectures | | Nuclear electrons | 07/12/20 | Lectures | | | 09/12/20 | Lectures | |--|----------|----------| | iscovery of neutron | 09/12/20 | | | oin and magnetic moment | 10/12/20 | Lectures | | able nuclei | 14/12/20 | Lectures | | emi empirical binding energy formula with correction | 10110100 | Lectures | | ctors | 16/12/20 | | | nell model | 17/12/20 | Lectures | | luclear forces | 21/12/20 | Lectures | | leson theory of nuclear forces | 23/12/20 | Lectures | | Discovery of pion | 24/12/20 | Lectures | | Virtual Photons | 28/12/20 | Lectures | | nteractions between energetic particles and matter | 30/12/20 | Lectures | | onization chamber | 31/12/20 | Lectures | | Solid state detectors, Proportional counter | 04/01/21 | EXAM | | Geiger-Muller counter, The Wilson cloud chamber | 06/01/21 | Lectures | | Bubble chamber, Scintillation counters | 07/01/21 | Lectures | | Van de Graaff generator, Linear accelerator | 11/01/21 | Lectures | | | 13/01/21 | Lectures | | Cyclotron, Betatron | 240.880 | | | MODU! | 18/01/21 | Lectures | | Radio activity properties of Alpha beta gamma | | | | laws of radio activity | 20/01/21 | Lectures | | Radio active series , hazards | 21/01/21 | Lectures | | Radio
dating, | 25/01/21 | Lectures | | Tunnel theory of alpha decay | 27/01/21 | Lectures | | beta decay, positorn emission, electron capture, | 28/01/21 | Lectures | | inverse beta and gamma decay | 01/02/21 | Lectures | | Concept of interactin crossection | 03/02/21 | Lectures | | Nuclear reactions | 04/02/21 | Lectures | | Center of mass coordinate, Q value | 08/02/21 | Lectures | | Center of mass coordinate, Q value | | | TLEGE | Nuclear reactors | 11/02/21 | Lectures | |---|----------|----------------| | nuclear fusion | 15/02/21 | Lectures | | Reactors: confinement methods | 17/02/21 | Lectures | | nternal Exam | 18/02/21 | Exam | | Lattitude effect, altitude effect, azimuth effect | 22/02/21 | Lectures | | Primary and secondary cosmic rays | 24/02/21 | Lectures | | Cosmic ray showers, discovery of positron | 25/02/21 | Lectures | | Mesons, Van allen belt, Origin of Crs | 01/03/21 | Lectures | | MOD | OULE III | No. 2. Company | | Interaction and particles | 04/03/21 | Lectures | | Leptons,neutrins and anti nuetrinos | 08/03/21 | Lectures | | Hadrons, Resonace particles | 10/03/21 | Lectures | | Elementary particle QN | 11/03/21 | Lectures | | Symmetries and conservations | 15/03/21 | Lectures | | Basic idea of quarks | 17/03/21 | Lectures | | Properties of quarks, Confinement | 18/03/21 | Lectures | | Internal Exam | 22/03/21 | Lectures | | Classification of stars | 24/03/21 | Lectures | | HR diagram, Luminosity of star | 25/03/21 | Lectures | | Stellar evolution | 29/03/21 | Lectures | | white dwarf, Chadrasekhar limit | 31/03/21 | Lectures | | Neutron star, Black holes | 01/04/21 | Lectures | | Supernova | 05/04/21 | Lectures | | Photon diffusion time | 07/04/21 | Lectures | III. Innovative Learning Programmes | Name of Programme Duration | Type | Proposed Time | |----------------------------|------------|----------------------| | Thought Experiments 1 Days | Experiment | 4 th Week | | Group Discussions 2 Days | Discussion | 6 th Week | ## IV. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. The assignments and seminars are individual assignments. | No | Topics | Activity | Submission De | | |------------|---------------------------------|---|--|--| | Assignment | 201 | As the topics are covered | Submit the assignment to
Google Classroom before
dead line | | | Seminar | Presentation of the given topic | Presentation of 20
minutes duration
with proper
exhibiting materials | 26 th hour of
Course | Present the seminar on the given topic | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. # V. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | | | <75 | Not eligible for appearing for ESE | #### VI. Required reading: - 1. Concepts of Modern Physics, Arthur Beiser, 6th Edition, Tata McGraw-Hill publishing company - 2. Modern Physics, R Murugeshan and K. Sivaprasath, 15th Edition (Revised) (2010), S.Chand - 3. Atomic and Nuclear Physics, S N Ghoshal, S.Chand. - 4. Nuclear and Particle Physics S L Kakani and Subhra Kakani -Viva Books 2008 - 5. Elements of Nuclear Physics, M L Pandya and R P S Yadav, Kedar Nath RamNath - 6. Modern Physics, Kennth Krane, 2nd Edition, Wiley India (Pvt) Ltd. - 7. Modern Physics , G. Aruldhas and P. Rajagopal, Prentice-Hall India OLLEGE 8. An Introduction to Astrophysics, Baidyanath Basu, 2nd Edition, Prentice-Hall India Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) # St. Albert's College (Autonomous) #### PPH1CRT0220: CLASSICAL MECHANICS #### I. Course Instructor | Name | Programme | Batch | Semester | Email | |--|---------------|---------|----------|---| | Dr. Sajeesh T H (Module 1, 2 and 3) Dr. Paxy(Module 4) | M.Sc. Physics | 2020-21 | | sajeeshth@alberts.edu.in
paxygeorge@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|---|----------------------------| | 1 | Contact hours | 72 (Including assignments) | | 2 | Assessment (CAE) | 7 | | | Total | 79 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - understand the fundamental concepts of the Lagrangian and the Hamiltonian methods and will be able to apply them to various problems; - (ii) understand the physics of small oscillations and the concepts of canonical transformations and Poisson brackets; - (iii) understand the basic ideas of central forces and rigid body dynamics; - (iv) understand the Hamilton-Jacobi method and the concept of action-angle variables. This course aims to give a brief introduction to the Lagrangian formulation of relativistic mechanics. #### IV. Course Delivery Plan | Topics | Session No & Date(s) | Methodology and
Duration | |---|----------------------|-----------------------------| | MODULE I - Lagrangian formulation (14 hrs) | | | | Introduction to the course | 25-10-2021 | Video Lecture | | Review of Newtonian Mechanics: Mechanics of a
Particle; Mechanics of a System of Particles | 27-10-2021 | Lecture | | Degree of freedom, Constraints | 28-10-2021 | Video Lecture | | Principle of virtual work; D'Alembert's principle | 29-10-2021 | Lecture | | and Lagrange's equations-derivation | 1-11-2021 | Lecture+ Recorded
Video | | |---|------------|-------------------------------|--| | velocity-Dependent potentials and the Dissipation Function | 3-11-2021 | Lecture | | | agrangian for a charged particle in electromagnetic field | 8-11-2021 | Lecture+Tutorial | | | Application of Lagrange's equation to: motion of a single particle in Cartesian coordinate system and plane polar coordinate system; bead sliding on a rotating wire. | 10-11-2021 | Lecture+Tutorial | | | Hamilton's Principle; Technique of Calculus of variations | 11-11-2021 | Lecture | | | The Brachistochrone problem | 13-11-2021 | Lecture+Tutorial | | | Derivation of Lagrange's equations from Hamilton's Principle. | 15-11-2021 | Lecture | | | Canonical momentum; cyclic coordinates | 17-11-2021 | Lecture+Tutorial | | | Conservation laws and Symmetry properties-
homogeneity of space and conservation of linear
momentum | 18-11-2021 | Lecture+Tutorial | | | isotropy of space and conservation of angular momentum; homogeneity of time and conservation of energy; | 22-11-2021 | Lecture+Tutorial | | | Noether's theorem(statement only; no proof is expected) | 23-11-2021 | Flipped Class /
Assignment | | | MODULE I - Hamiltonian formulation: (4hrs) | | | | | Legendre Transformations | 18-11-21 | Lecture | | | Hamilton's canonical equations of motion | 22-11-21 | Lecture | | | Hamiltonian for a charged particle in electromagnetic field | 25-11-21 | Lecture | | | Cyclic coordinates and conservation theorems | 29-11-21 | Lecture | | | Hamilton's equations of motion from modified
Hamilton's principle | 2-12-21 | Lecture | | | MODULE II - Small oscillations (8hrs) | 3-12-2021 | | | | Stable equilibrium unstable equilibrium and neutral equilibrium | 5-12-2021 | Lecture | | | motion of a system near stable equilibrium-Lagrangian of the system and equations of motion | 6-12-21 | Lecture | | | Small oscillations- frequencies of free vibrations | 9-12-21 | Lecture | | | normal coordinates and normal modes | 13-12-21 | Lecture | | | system of two coupled pendula-resonant frequencies normal modes and normal coordinates | 16-12-21 | Lecture+Tutorial | | | free vibrations of CO ₂ molecule | 27-12-21 | Lecture+Tutorial | | | resonant frequencies normal modes and normal coordinates- CO2 | 30-12-21 | Lecture+Tutorial | | | Module II -Canonical transformations and poisson brackets (10 hrs) | | | | | Equations of canonical transformations | 03-11-21 | Lecture | | Trom | our basic types of generating functions and the corresponding basic canonical transformations. F1 and F2) | 10-11-21 | Lecture | |--|--------------|----------| | 3 and F4 -functions and the corresponding basic canonicaltransformations | 17-11-21 | Lecture | | examples of canonical transformations | 01-12-21 | Tutorial | | dentity transformation | 08-12-21 | Lecture | | point transformation | 15-12-21 | Lecture | | Module III - Central force problem (9hours) | u | | | Reduction to the equivalent one body problem | 22-11-2021 | Lecture | | Equations of motion and first integrals | 23-11-2021 | Lecture | | equivalent one-dimensional problem and classification of orbits | 25-11-2021 | Lecture | | Differential equation for the orbits | 26-11-2021 | Lecture | | (eplerproblem. | 29-11-2021 | Lecture | | Rigid body motion | 1-12-2021 | Lecture | | Angular momentum | 2-12-2021 | Lecture | | inetic energy | 3-12-2021 | Lecture | | uler's angles | 6-12-2021 | Lecture | | nfinitesimal rotations | 8-12-2021 | Lecture | | ate of change of a vector | 10-12-2021 | Lecture | | Coriolis force | 13-12-2021 | Lecture | | uler's equations of motion of a symmetric top | 15-12-2021 | Lecture | | neavy symmetric top with one point fixed | 16-12-2021 | Lecture | | Module
IV -Hamilton-Jacobi theory and action - angle variables (12 hrs) | | | | Hamilton-Jacobi Equation for Hamilton's Principal | 22-12-2021 | Lecture | | physical significance of the principal function. | 05-01-2022 | Lecture | | Harmonic oscillator problem using the Hamilton-Jacobi method. | 12-01-2022 | Lecture | | Hamilton-Jacobi Equation for Hamilton's characteristic function | 19-02-2022 | Lecture | | Separation of variables in the Hamilton-Jacobi Equation, Separability of a cyclic coordinate in Hamilton-Jacobi equation | 02-02-2022 | Lecture | | | | Lecture | | Hamilton-Jacobi equation for a particle moving in a central force field(plane polar coordinates). | 09-02-2022 | Lecture | | Action-Angle variables, harmonic oscillator problem in action-angle variables. | 16-02-2022 | Lecture | | Module IV -Classical mechanics of relativity (6 h | rs.) | | | Lorentz transformation in matrix form | 20-12-2021 | Lecture | | velocity addition, Thomas precession. | 22-12-2021 | Lecture | | Lagrangian formulation of relativistic mechanics | 23-12-2021 | Lecture | | | വ | |------|------| | * | RMAT | | GE | FOR | | A | GE | | Page | MER | | Application of relativistic Lagrangian to (i)motion under a constant force (ii) harmonic oscillator | 3-1-2022 | Tutorial | |---|----------|----------| | Application of relativistic Lagrangian to (iii) charged particle under constant magnetic field | 4-1-2022 | Tutorial | #### V. Innovative Learning Programmes | Name of Programme | Duration | Type | Proposed Time | |--------------------------------|----------|------------------------|---| | Student Centred micro teaching | 4hrs | seminar | 10-1-22 | | Group Discussion | 3 hrs | Brain storming | 17-1-22 | | Blended Class | 3 hrs | Class + prepared video | 25-10-2021,
28-10-2021,
1-11-2021 | #### VI. Assignments and Seminars Assignments #### Newtonian Mechanics The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission Deadlines | | Submission D | Deadlines | |--------------------|---|--------------------------------------|-----------------------------|------------------|--------------|-----------| | Assignmen
t -1 | Problems
related to
Lagrangian
mechanics | Solution of
numerical
problems | 6-12-21 | Submit Hard copy | | | | Assignmen
t -2` | Problems-H
amiltonian
mechanics | Solution of numerical problems | 17-1-22 | Submit Hard copy | | | | Seminar | | | | | | | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### VII. Attendance (one component in class participation): <75 Not eligible for appearing for ESE VIII. Required reading: Dr. LOUIE FROBEL HG ASSISTANT PROFESSOR & HE D DEPARTMENT OF PHYSICS ST. ALBERT'S CULLEGE (AUTONOMOUS) ERNAKULAM - 1. Classical Mechanics: Herbert Goldstein, Charles Poole and John Safko, (3/e); Pearson Education. - 2. Classical Mechanics: G. Aruldhas, Prentice Hall 2009. #### References: - 1. Theory and Problems of Theoretical Mechanics (Schaum Outline Series): Murray R. Spiegel, Tata McGraw-Hill 2006. - 2. Classical Mechanics: An Undergraduate Text: Douglas Gregory, Cambridge University Press. - 3. Classical Mechanics: Tom Kibble and Frank Berkshire, Imperial College Press. - 4. Classical Mechanics (Course of Theoretical Physics Volume 1): L.D. Landau and E.M. Lifshitz, Pergamon Press. - 5. Analytical Mechanics: Louis Hand and Janet Finch, Cambridge University Press. - 6. Classical Mechanics: N.C.Rana and P. S. Joag, Tata Mc Graw Hill. - 7. Classical Mechanics: J.C. Upadhyaya, Himalaya Publications, 2010. OF 8. www.nptelvideos.in/2012/11/classicalphysics.html. Dr. LOUIE FROBEL P.G ASSISTANT PHOFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM # St. Albert's College (Autonomous) #### PPH1CRT0319: ELECTRODYNAMICS #### Course Instructor | Name | Programme | Batch | Semester | Email | |---------------------------|---------------|---------|----------|-------------------------| | Augustine Sumesh
C. J. | M.Sc. Physics | 2020-21 | 1 | sumeshcj@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|---|----------------------------| | 1 | Contact hours | 72 (Including assignments) | | 2 | Assessment (CAE) | 3 | | | Total | 75 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - Explain the basic theories of electrostatics and magneto-statics and solve the problems related to these numerically. - Discuss propagation of electromagnetic waves through different medium and categorize the conservation laws. Categorize the factors affecting the surface tension - Investigate the power radiated from different radiating systems. Classify different thermodynamic systems - Analyze the applications of electromagnetic radiation and wave guidesCourse Delivery Plan | Topics | Session No & Date(s) | Methodology and
Duration | |---|--|-----------------------------| | MODULE I | | | | Introduction | 08-07-20 | Lecture | | Vector algebra | 15-07-20 | Lecture | | Differential calculus | 22-07-20 | Lecture | | Gradient Diveregence and Curl | 29-07-20 | Lecture | | Electrostatics: Electric field of a polarized object | 05-08-20 | Lecture | | Electric field in a conductor, dielectric
Electric displacement -Gauss's law in
dielectric medium | The state of s | Lecture | | linear dielectric medium Boundary condition different interface. | | | |---|----------|---------| | Uniqueness theorem and electrostatic potential-Solving Poisson's and Laplace equations for boundary value problems | 19-08-20 | Lecture | | Solving Poisson's and Laplace equations
for boundary value problems-II | 02-09-20 | Lecture | | Method of images- point charge -line
charge above a grounded conducting
plane | 09-09-20 | Lecture | | Potential at large distance-multipole expansion due to a localized charge distribution-Electric field of a dipole. | 16-09-20 | Lecture | | Magnetostatics: Biot-Savart law-
divergence and curl of B- Ampere's law. | 23-09-20 | Lecture | | Magnetic vector potential-multipole expansion of vector potential-boundary conditions | 30-09-20 | Lecture | | Magnetic field inside matter-
Magnetization (M)-Magnetic flux
density (B)-Auxiliary field (H). | 07-10-20 | Lecture | | Electrodynamics: Electromotive force - motional emf - Faraday's law-, electrodynamic equations - displacement current. | 14-10-20 | Lecture | | Uniform
sinusoidal time varying fields E and B
and Maxwell's equations in free space
and matter. Boundary
conditions of electric and magnetic field | 21-10-20 | Lecture | | Conservation laws- continuity equation-
Poynting's theorem | 28-10-20 | Lecture | | Maxwell's stress tensor- momentum conservation. | 04-11-20 | Lecture | | MODULE II | | | | Wave equation for E and B | 07-07-20 | Lecture | | Monochromatic plane waves | 09-07-20 | Lecture | | Plane wave- problems | 10-07-20 | Lecture | | Energy, momentum | 14-07-20 | Lecture | | Propagation of em waves through linear media | 16-07-20 | Lecture | | Plane wave | 17-07-20 | Lecture | | Normal incidence | 21-07-20 | Lecture | | Oblique incidence | 23-07-20 | Lecture | | Electromagnetic waves in a conducting medium | 24-07-20 | Lecture | | Class
test | 28-07-20 | Lecture | | Reflection at conducting surface | 30-07-20 | Lecture | |--|----------|---------| | Frequency dependence of permittivity | 31-07-20 | Lecture | | Dispersion of electromagnetic waves in non-conductors | 04-08-20 | Lecture | | conductors and plasma medium | 06-08-20 | Lecture | | MODULE III | | | | Potential formulation of electrodynamics | 07-08-20 | Lecture | | Gauge transformations-Coulomb and
Lorentz gauge | 11-08-20 | Lecture | | Continuous charge distribution | 13-08-20 | Lecture | | Retarded potential-Jefmenko's equation | 14-08-20 | Lecture | | Point charges- Lienard Wiechert potentials | 18-08-20 | Lecture | | Field of a point charge in motion- Power radiated by a point charge | 20-08-20 | Lecture | | Electric and magnetic dipole radiation | 21-08-20 | Lecture | | Radiation from arbitrary distribution of charges | 25-08-20 | Lecture | | Radiation reaction | 27-08-20 | Lecture | | Abraham-Lorentz formula | 28-08-20 | Lecture | | MODULE IV | | | | Relativistic electrodynamics | 01-09-20 | Lecture | | Structure of space time- Four vectors-Proper time and proper velocity- | 03-09-20 | Lecture | | Relativistic energy and
momentum-Relativistic dynamics-
Minkowski force, | 04-09-20 | Lecture | | Lorentz transformation of em field | 08-09-20 | Lecture | | field tensor-electrodynamics in tensor notation | 10-09-20 | Lecture | | Potential formulation of relativistic electrodynamics | 11-09-20 | Lecture | | Magnetism as a relativistic phenomenon | 15-09-20 | Lecture | | Waveguides | 17-09-20 | Lecture | | Waves between parallel planes-TE-TM-TEM waves | 18-09-20 | Lecture | | Rectangular waveguide | 22-09-20 | Lecture | | TE-TM waves -impossibility of TEM wave | 24-09-20 | Lecture | | Cylindrical waveguide- TE-TM waves | 25-09-20 | Lecture | | | | | # IV. Innovative Learning Programmes | Name of Programme | Duration | Type | Proposed Time | |--|------------|------|---------------| | A STATE OF THE STA | 15/10 | (11) | | | | * / (蘇藍馬馬) | 161 | | #### V. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity Solution of numerical problems | Submission Deadlines | | | |--------------------|------------------------------------|---|----------------------|------------------|--| | Assignmen
t -1 | Problems
related to
em waves | | 11-08-19 | Submit Hard copy | | | Assignmen
t -2` | Problems-w
ave giudes | Solution of
numerical
problems | 06-10-20 | Submit Hard copy | | | Seminar | | | | | | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### VI. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | | | <75 | Not eligible for appearing for ESE | | | | #### VII. Required reading: #### Text Book: - 1. Introduction to Electrodynamics, David J. Griffiths, PHI. - 2. Electromagnetics, John D.Kraus, McGraw-Hill International - 3. Classical electrodynamics, J.D Jackson, John Wiley & Sons Inc #### References: - 1. Electromagnetic waves and radiating systems Edward C Jordan, Keith G Balamin, Printice Hall India Pvt.Ltd - 2. Elements of Electromagnetic, Mathew N. O Sadiku, Oxford University Press - 3. Antenna and wave propagation, K.D Prasad, Satyaprakashan, New Delhi - 4. Electromagnetism problems with solutions, Ashutosh Pramanik, PHI ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS ERNAKULAM # Department of Physics St. Albert's College (Autonomous) #### PPH1CRT0419 ELECTRONICS #### I. Course Instructor | Name | Sem, Programme& Batch | Email | |-------------------|-----------------------------|--------------------------| | Dr. Sajeesh T. H. | Sem I M.Sc Physics, 2020-21 | sajeeshth@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |-------|-------------------------|-------------------------| | 1 | Contact hours | 1110111 62 59 114 514 6 | | 2 | Assessment (CAE & ESE) | 4 | | - 158 | Total | 63 | #### I. Course Objectives: - * Apply the knowledge of op amp circuits to construct and analyze various practical op amp circuits. - * Study the application of Op Amp as a current to voltage converter and inverter - * Discuss the frequency response of compensated and non-compensated op-amps and working of oscillators, comparators, converters, voltage regulators, superheterodyne AM and FM radio receivers, generators. - * Describe the working of an instrumentation amplifier and its applications. - * Distinguish various active filters, integrator and differentiator. #### I. Course Delivery Plan This course is designed to make students get understanding and perform numerical analysis and integration. | Topics MODULE I | Session No &
Date(s) | Methodology and
Duration | |---|-------------------------|-----------------------------| | Inverting amplifier | 16/11/20 | Lectures | | Non Inverting amplifier | 17/11/20 | Lectures | | Voltage series feedback | 19/11/20 | Lectures | | closed loop voltage gain | 20/11/20 | Lectures | | Difference input voltage | 21/11/20 | Lectures | | Input and output resistance with feedback | 23/11/20 | Lectures | | Bandwidth with feedback | 24/11/20 | Lectures | |---|----------|----------| | Total output offsetvoltagewithfeedback | 26/11/20 | Lectures | | Voltagefollower | 27/11/20 | Lectures | | Closed loop voltage gain: inverting input terminal and virtual ground | 28/11/20 | Lectures | | Input and output resistance with feedback | 30/11/20 | Lectures | | Bandwidth with feedback | 01/12/20 | Lectures | | Total output offset voltage with feedback. | 03/12/20 | Lectures | | Current to voltage converter | 04/12/20 | Lectures | | Differential amplifier with one OP-AMP and 2 OP-AMP | 05/12/20 | Lectures | | Tutorial | 07/12/20 | TUTORIAL | | MODULE II | | | | Input offset voltage | 08/12/20 | Lectures | | input bias voltage, input offset current | 10/12/20 | Lectures | | Total outut offset voltage | 11/12/20 | Lectures | | Effect of variation in power supply | 12/12/20 | Lectures | | Changes in input offset voltage and current with time | 14/12/20 | Lectures | | Noise and CMRR | 15/12/20 | Lectures | | DC and AC amplifier | 17/12/20 | Lectures | | AC with supply voltage | 18/12/20 | Lectures | | Peaking summing averaging | 19/12/20 | Lectures | | Instrumentation amp | 21/12/20 | Lectures | | Low voltage DC AC voltmeter | 22/12/20 | Lectures | | Voltage to current converter, current to voltage | 23/12/20 | Lectures | | Very high input impedence | 24/12/20 | Lectures | | integrator, differentiator | 26/12/20 | Lectures | | Internal EXAM | 28/12/20 | EXAM | | Frequency response, copensating network | 29/12/20 | Lectures | | | | | | frequency response, internaly compensated and non compensated | 31/12/20 | Lectures |
--|----------|----------| | High freq. Op-amp | 01/01/21 | Lectures | | Open loop gain as function of freq | 02/01/21 | Lectures | | circuit stability, slew rate | 04/01/21 | Lectures | | First order BW filter | 05/01/21 | Lectures | | Second order BW filter | 07/01/21 | Lectures | | First order and second order high pass BW filter | 08/01/21 | Lectures | | wide and narrow band filter | 09/01/21 | Lectures | | rejector filter | 11/01/21 | Lectures | | All pass filter, Oscillators | 12/01/21 | Lectures | | Phase shift oscillator | 14/01/21 | Lectures | | Wein bridge oscillator | 15/01/21 | Lectures | | square wave, triangular, sawtooth wave, generator, | 16/01/21 | Lectures | | Voltage controller | 18/01/21 | Lectures | | Tutorial | 19/01/21 | TUTORIAL | | MODULE IV | | | | Basic comparator- Zero crossing detector- | 21/01/21 | Lectures | | Schmitt Trigger - Comparator characteristics- | 22/01/21 | Lectures | | Limitations of op-amp as comparators- | 23/01/21 | Lectures | | Voltage to frequency and frequency to voltage converters | 25/01/21 | Lectures | | D/A and A/D converters | 26/01/21 | Lectures | | Peak detector Sample and Hold | 28/01/21 | Lectures | | IC555 Internal architecture | 29/01/21 | Lectures | | Applications IC565-PLL, | 30/01/21 | Lectures | | Voltage regulator Ics 78XX and 79XX | 01/02/21 | Lectures | | Review of analog modulation | 02/02/21 | Lectures | | Radio receivers – AM receivers | 04/02/21 | Lectures | | superhetrodyne receiver | 05/02/21 | Lectures | | TO STATE OF THE ST | | | | | | | | detection and automatic gain control | 06/02/21 | Lectures | |---------------------------------------|----------|----------| | Communication receiver – FM receiver | 08/02/21 | Lectures | | Ratio detector – stereo FM reception. | 09/02/21 | Lectures | | Internal EXAM | 11/02/21 | EXAM | #### III. Innovative Learning Programmes | Name of Programme | Duration | Type | Proposed Time | |----------------------------------|----------|--------|----------------------| | Circuit designing and evaluation | 1 Days | Design | 4 th Week | #### IV. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. The assignments and seminars are individual assignments. | No Topics Activity Assignment Assignment Preparation of assignment topic | Topics | Activity Submissio | Submission Deadlines | | |---|---------------------------------------|---|--|--| | | As the topics are covered | Submit the assignment to
Google Classroom before
dead line | | | | Seminar | Presentation
of the given
topic | Presentation of 20
minutes duration
with proper
exhibiting materials | 20th, 23rd and
26th hour of
Course | Present the seminar on the given topic | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### V. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | 1 | | <75 | Not eligible for appearing for ESE | #### VI. Required reading: - 1. Op-amps and linear integrated circuits R.A. Gayakwad 4thEdn.PHI - 2. Fundamentals of Electronic Devices and Circuits 5th Ed. David A. Bell, Cambridge. - 3. Electronic Devices (Electron Flow Version), 9/E Thomas L. Floyd, Pearson - 4. Electronic Communications Dennis Roddy and John Coolen, 4th Ed. Pearson. - Modern digital and analog communication systems, B.P. Lathi & Zhi Ding 4th Ed., Oxford University Press. - 6. Linear Integrated Circuits and Op Amps, S Bali, TMH ST. ALBERTIS COLLEGE LEGIS Dr. LOUIE FROBEL P.G ASSISTANT PROFESCUR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE INUTONOMOUS EGNAKULAM # Department of Physics St. Albert's College (Autonomous) PPH2CRT0119: MATHEMATICAL METHODS IN PHYSICS - II #### I. Course Instructor | Name | Sem, Programme& Batch | Email | |-----------------|------------------------------|----------------------------| | Dr. LouieFrobel | Sem II M.Sc Physics, 2020-21 | Louiefrobel@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|-------------------------|------------------| | 1 | Contact hours | 61 | | 2 | Assessment (CAE & ESE) | 4 | | | Total | 65 4 4 4 4 4 4 4 | #### I. Course Objectives: - * Learn the basic elements of complex analysis, including the integral theorems - * Introduce the concepts of Laplace and Fourier transforms - Introduce the Fourier series and it's application to solutions of partial differential equations. - * Discuss special functions and differential equations as the basis for further application in theoretical physics. #### I. Course Delivery Plan This course is designed to make students get understanding and perform mathematical methods for getting solutions of physic problems. | Topics | Session No &
Date(s) | Methodology and
Duration | |---------------------------------|-------------------------|-----------------------------| | Module | e I | | | Functions of a complex variable | 01/03/21 | Lectures | | Analytic functions | 18/11/20 | Lectures | | Cauchy-Riemann equation | 03/03/21 | Lectures | | Integration in a complex plane | 04/03/21 | Lectures | | Cauchy Theorem | 05/03/21 | Lectures | | Cauchy's integral formulas | 06/03/21 | Lectures | |--|----------|-------------| | Cauchy's integral formulas continues. | 25/11/20 | Lectures | | Taylor expansion | 08/03/21 | Lectures | | Laurent expansion | 10/03/21 | Lectures | | Residue | 12/03/21 | Lectures | | Poles | 02/12/20 | Lectures | | Cauchy residue theorem | 13/03/21 | Lectures | | Cauchy's principle value theorem | 15/03/21 | Lectures | | Evaluation of integrals | 17/03/21 | Online | | Tutorials and discussions | 09/12/20 | DISCUSSIONS | | 18/03/21 | 08(03/2) | T a mage to | | Fourier Series | 19/03/21 | Lectures | | Application of Fourier series | 20/03/21 | Lectures | | Square Wave | 22/03/21 | Lectures | | Full wave rectifier | 16/12/20 | Lectures | | Fourier Integral | 24/03/21 | Lectures | | Fourier Transform | 25/03/21 | Lectures | | Finite Wave Train | 26/03/21 | Lectures | | Convolution Theorem of parseval's relation | 27/03/21 | Lectures | | Momentum representation | 23/12/20 | Lectures | | Hydrogen atom | 29/03/21 | Online | | Harmonicoscillator - | 31/03/21 | Lectures | | Laplace Transform | 30/12/20 | Lectures | | Inverse Laplace Transform | 05/04/21 | Lectures | | Earth Mutation | 06/01/21 | Lectures | | Damped Oscillator | 07/04/21 | Lectures | | LCR circuit OF PHYS | 08/04/21 | Lectures | | V Or marco | | | (Typang) | Gamma Function | 10/04/21 | Lectures | |--|----------|----------| | Beta Function | 13/01/21 | Lectures | | Symmetry Property of Functions | 12/04/21 | Lectures | | Evaluation of Beta functions | 15/04/21 | Lectures | | Other forms of Beta Functions | 16/04/21 | Lectures | | Transformation of P functions | 20/01/21 | Lectures | | Evaluation of Gamma Functions | 17/04/21 | Lectures | | Other forms of Gamma Functions | 19/04/21 | Lectures | | Transformation of Gamma Functions | 27/01/21 | Lectures | | Relation between Beta and Gamma functions | 22/04/21 | Lectures | | Evaluation of Integrals | 23/04/21 | Lectures | | Bessel's Differential Equation, | 24/04/21 | Lectures | | Legendre Differential Equation | 26/04/21 | Lectures | | Associated Legendre Differential Equations | 03/02/21 | Lectures | | Hermite Differential Equations | 28/04/21 | Lectures | | Laguerre Differential Equations | 29/04/21 | Lectures | | INTERNAL EXAM | 30/04/21 |
EXAM | | Module IV | | 3,192 | | Characteristics of boundary conditions for partial differential equation | 10/02/21 | Lectures | | Solution of PDF by method of separation of variables in
Cartesian | 03/05/21 | Lectures | | Solution of PDF by method of separation of variables in Cylindrical | 05/05/21 | Lectures | | Solution of PDF by method of separation of variables in spherical polar | 06/05/21 | Lectures | | Solution of Laplace eqn in cartesian | 17/02/21 | Lectures | | Solution of Laplace eqn in cylindrical | 07/05/21 | Lectures | | Solution of Laplace eqn in sperical polar | 08/05/21 | Lectures | | Heat equation in Cartesian co-ordinates | 10/05/21 | Lectures | SCOLLEGE | Non-Homogeneous equation | 24/02/21 | Lectures | |--|----------|----------| | Green's function | 15/05/21 | Lectures | | Symmetry of Green's Function | 17/05/21 | Lectures | | Green's Function for Poisson Equation | 19/05/21 | Lectures | | Green's Function for Laplace Equation | 20/05/21 | Lectures | | Green's Function for Helmholtz Equation | 21/05/21 | Lectures | | Application of Greens equation in scattering problem | 22/05/21 | Lectures | | Internal Exam | 24/05/21 | EXAM | #### III. Innovative Learning Programmes | Name of Programme | Duration | Туре | Proposed Time | |-------------------|----------|------------|----------------------| | Tutorials | 1 Days | Experiment | 4 th Week | | Group Discussions | 2 Days | Discussion | 6 th Week | #### IV. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. The assignments and seminars are individual assignments. | No | Topics | Activity | Submission De | eadlines | |------------|---------------------------------|---|---|--| | Assignment | Assignment on given topic | Preparation of assignment | As the topics are covered | Submit the assignment to
Google Classroom before
dead line | | Seminar | Presentation of the given topic | Presentation of 20
minutes duration
with proper
exhibiting materials | 20 th , 23 ^{td} and
26 th hour of
Course | Present the seminar on the given topic | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### V. Attendance (one component in class participation): | 95-100% | 5 | | |---------|--------------------------------|-----| | 90-95% | 4 | | | 85-90% | 3 | | | 80-85% | 2 | | | 75-80% | OF PHYS | | | <75 | Not eligible for appearing for | ESE | #### VI. Required reading: - Mathematical methods for Physicists, G.B. Arfken& H.J. Weber 5th edition, Academic Press. - Mathematical Physics , V.Balakrishnan, Ane Books Pvt Limited 2. - 3. Advanced Engineering Mathematics E.Kreyszig 7thedition John Wiley - 4. Mathematical Physics, B.S.Rajput, Y.Prakash 9th edition PragatiPrakashan - 5. Mathematical Physics, B.D. Gupta, Vikas Publishing House - 6. Matrices and tensors in Physics, A.W.Joshi - 7. Mathematical Physics , P.K.Chatopadhyay ,New Age International Publishers TLEGE AM.* 8. Mathematical Physics, Sathyaprakash, Sultan Chand & Sons Dr. LOUIE FROBEL P.G. ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM # St. Albert's College (Autonomous) # PPH2CRT0419: CONDENSED MATTER PHYSICS #### I. Course Instructor | Name | Programme | Batch | Semester | Email | |-------------------------------------|---------------|---------|----------|-------------------------| | Augustine Sumesh
C. J (Module 1) | | | | sumeshcj@alberts.edu.in | | (Module 2,3 and 4) | M.Sc. Physics | 2020-21 | 11 | | # II. Duration of Course: | No | Activity | Duration | |----|---|----------------------------| | 1 | Contact hours | 72 (Including assignments) | | 2 | Assessment (CAE) | 3 | | | Total | 75 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - Formulate basic models for electrons and lattice vibrations for describing the physics of crystalline materials. - To develop an understanding of relation between band structure and the electrical/optical properties of a material. | Topics | Session No &
Date(s) | Methodology and
Duration | |--|-------------------------|-----------------------------| | MODULE I | | Lecture | | Diffraction of waves by crystals-Bragg's
Law | 07-12-20 | | | Scattered wave amplitude | 14-12-20 | | | reciprocal lattice vectors | 21-12-20 | | | diffraction condition-Laue equations-Ewald construction | 28-12-20 | | | Brillouin zones- reciprocal lattice to SC,
BCC and FCC lattices-properties of
reciprocal lattice | 04-01-21 | | | diffraction intensity - structure factor and atomic form factor- physical significance. | F19+01-21 | THE SOUTH | Thoma- | Crystal symmetry-symmetry elements in crystals | 18-01-21 | |---|---| | point groups, space groups
Ordered phases of matter | 25-01-21 | | translational and orientational order-
kinds of liquid crystalline order | 01-02-21 | | Elements of Quasi crystals | 08-02-21 | | Energy levels in one dimension-quantum states and degeneracy | 15-02-21 | | density of states | 22-02-21 | | Fermi-Dirac statistics -Effect of
temperature on Fermi-Dirac
distribution | 01-03-21 | | Free electron gas in three dimensions- | 08-03-21 | | Heat capacity of the electron gas-
relaxation time and mean free path | 15-03-21 | | Electrical conductivity and Ohm's law | 22-03-21 | | Widemann-Franz-Lorentz law - electrical resistivity of metals. | 29-03-21 | | MODULE II | The last transfer of | | Nearly free electron model- Origin of energy gap-Magnitude of the Energy Gap | 08-12-20 | | Bloch functions, Kronig-Penney model | 10-12-20 | | Wave equation of election in a periodic | 11-12-20 | | potential-Restatement of Bloch theorem | | | Crystal momentum of an Electron-Solution of the central equations | 15-12-20 | | Brillouin zone- construction of Brillouin zone in one and two dimensions | 17-12-20 | | extended, reduced and periodic zone scheme of Brillouin zone | 18-12-20 | | Effective mass of electron | 22-12-20 | | Distinction between conductors, semiconductors and insulators | 24-12-20 | | Equations of motion-Effective mass-Physical interpretation of effective mass - Effective mass in semiconductors | 25-12-20 | | Intrinsic carrier concentration | 29-12-20 | | Impurity conductivity-Thermal ionization of Donors and Acceptors | 31-12-20 | | Thermoelectric effects-semimetals-super | 01-01-21 | | Bloch Oscillator-Zener tunnelling | 05-01-21 | Vypamo | MODULE III | | |--|----------| | Vibrations of crystals with monatomic
basis –First Brillouin zone-Group
Velocity | 07-01-21 | | Two atoms per Primitive Basis | 12-01-21 | | Quantization of elastic waves | 14-01-21 | | Phonon momentum | 15-01-21 | | Inelastic scattering of phonons | 19-01-21 | | Phonon Heat Capacity-Plank distribution | 21-01-21 | | Density of States in one and three dimensions | 22-01-21 | | Debye model for density of states-Debye
T3 Law | 26-01-21 | | Einstein Model for Density of states | 28-01-21 | | Anharmonic Crystal interactions-Thermal Expansion | 29-01-21 | | Thermal Conductivity-thermal resistivity of phonon gas | 02-02-21 | | Umklapp Processes-Imperfections | 04-02-21 | | MODULE IV | | | Quantum theory of para
magnetism | 05-02-21 | | Hund's rules-crystal field splitting-spectroscopic splitting factor | 09-02-21 | | Cooling by adiabatic demagnetization –
Nuclear Demagnetization | 11-02-21 | | Ferromagnetic order-Curie point and the exchange integral | 12-02-21 | | Temperature dependence of the saturation-Magnetization-Saturation Magnetization at absolute Zero | 16-02-21 | | Magnons- Quantization of spin waves-Thermal excitation of Manganons | 18-02-21 | | Neutron Magnetic Scattering- | 19-02-21 | | Ferromagnetic order-curie temperature and Susceptibility | 23-02-21 | | Antiferromagnetic order-susceptibility below Neel-Temperature | 25-02-21 | | Ferromagnetic domains-Anisotropic Energy-transition region between Domains-origin of domains | 26-02-21 | | Coercivity and Hysteresis | 02-03-21 | | Single Domain Particles | 04-03-21 | | Geomagnetism and | 05-03-21 | | Biomagnetism-Magnetic scope of PHVS microscopy | | | Elements of superfluidity | 09-03-21 | Clipim # Page PAGE * #### IV. Innovative Learning Programmes | Name of Programme | Duration | Туре | Proposed Time | |---------------------------------------|----------|------|---------------| | · · · · · · · · · · · · · · · · · · · | | | | | | | | | #### V. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission Deadlines | | ctivity Submission Deadlines | Deadlines | |--------------------|--|--------------------------------|----------------------|------------------|------------------------------|-----------| | Assignmen
t -1 | Problems Solution of related to numerical problems | | 18-03-21 | Submit Hard copy | | | | Assignmen
t -2° | Problems-cr
ystal
symmetry | Solution of numerical problems | 1-4-21 | Submit Hard copy | | | | Seminar | | Tarana a v | | | | | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. VI. Attendance (one component in class participation): | 5 | |------------------------------------| | 4 | | 3 | | 2 | | 1 | | Not eligible for appearing for ESE | | | #### VII. Required reading: #### Text Book: - 1. Introduction to Solid State Physics, Charles Kittel, Wiely, Indian reprint (2015). - 2. Solid State Physics, A.J. Dekker, Macmillan & Co Ltd. (1967) - 3. Introduction to Solids, L V Azaroff, McGRAW-HILL BOOK COMPANY, INC. New York (1960) References: Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS FRNAKULAM - Elementary Solid State Physics, M. Ali Omar, Pearson, 4th Indian Reprint (2004). 2. - Solid State Physics, C.M. Kachhava, Tata McGraw-Hill (1990). 3. - Elements of Solid State Physics, J. P. Srivastava, PHI (2004) 4. - Solid State Physics, Dan Wei, Cengage Learning (2008) 5. - Solid State Physics, J S Blackemore, Cambridge University Press (1985) 6. - 8. Electronic Properties of Crystalline Solids, Richard Bube, Academic Press New York 7. (1974) MALULAM Dr. LOUIE FROBEL P.G. ASSISTANT TO FESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAK'II AM # St. Albert's College (Autonomous) #### PPH4CRT0119 NUCLEAR AND PARTICLE PHYSICS #### I. Course Instructor | Name | Sem, Programme & Batch | Email | |---------------------------|--------------------------|--------------------------------| | Dr.Sumithra Sivadas Menon | SemesterII, M.Sc 2020-21 | sumithrasivadas@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|---|---------------------------| | 1 | Contact hours | 51(Including assignments) | | 2 | Assessment (CAE & ESE) | 7 | | | Total | 58 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 6 | #### III. Course Objectives: - . To understand the fundamental concepts of the Dirac formalism . - . To understand how quantum systems evolve in time - · To understand the basics of the quantum theory of angular momentum - This course enable the student to solve the hydrogen atom problem which is a prelude to more complicated problems in quantum mechanics #### IV. Course Delivery Plan This course is a course requiring lot of student centric learning processes. The teaching methods include lectures, discussions, field based assignments etc. S COLLEGE | Topics | Session No &
Date(s) | Methodology and
Duration | |---|-------------------------|-----------------------------| | Topics OF | Session No & Date(s) | Methodology and Duration | | These are the topics to be covered in the modules | WKULAM . | | | UNIT-1 | | | |--|--------------------------|--| | Basics Formulation of Quantum | | | | Mechanics | | | | 1.1 Development of the idea of state vectors | 01/12/2020 | Class exercises | | rom sequential Stern-Gerlach experiments | 02/12/2020 | | | Dirac notation for state vectors: ket space, | | Lectures | | bra space and inner products; | | | | | | GD | | 1.2 Operators; Associative axiom; outer | 03/12/2020 | | | product; | | | | 1.3 Hermitian adjoint; Hermitian operator; | 04/12/2020 | | | Eigenkets and eigenvalues of Hermitian | 07/12/2020 | | | operators. Eigenkets of observables as base | | | | kets; concept of complete set. Projection | | | | operators | 00/42/2020 | | | . 1.4 Matrix representations of operators, | 08/12/2020 | | | kets and bras | 10/12/2020 | | | 1.5 Measurements in quantum mechanics; expectation value ;Compatible observables | 10/12/2020
09/12/2020 | | | and existence of simultaneous eigenkets; | 03/12/2020 | | | General Uncertainty Relation. | | | | 1.6 Unitary operator, change of basis and | 11/12/2020 | | | transformation matrix,
unitary equivalent | 22/22/2020 | | | observables. | | | | 1.7Position eigenkets, infinitesimal | 14/12/2020 | | | translation operator and its properties, | 15/12/2020 | | | inear momentum as generator of | 16/12/2020 | | | ranslation, canonical commutation | | | | elations. Wavefunction as an expansion | | | | coefficient; eigenfunctions, momentum | | | | eigen function | | | | 1.8 momentum space wavefunctions and | 17/12/2020 | | | the relation between wavefunctions in | 21/12/2020 | | | position space and momentum space. Gaussian wave packet- compuatation of | 18/12/2020
22/12/2020 | | | dispersions in position and momentum. | 22/12/2020 | the state of s | | position and momentum | | | | | | | | UNIT – 2 | | | | Quantum Dynamics | | | | | 23/12/2020 | | | 2.1 Time evolution operator and its properties. | 24/12/2020 | | | 18/10 | 13,1 | | | 2.2 Schrodinger equation for the time | 28/12/2020 | | | evolution operator; solution of the | 29/12/2620 | | | The state of s | | | | Schrodinger equation for different time dependences of the Hamiltonian | 30/12/2020 | |--|--| | 2.3 Energy eigenkets; time dependence of expectation values | 31/12/2020 | | 2.4 time evolution of a spin half system and spin precession | 04/01/2021 | | 2.5 Correlation amplitude; time-energy uncertainty relation and its interpretation | 05/01/2021
06/01/2021 | | 2.6 Schrodinger picture and Heisenberg picture; behavior of state kets and observables in Schrodinger and Heisenberg pictures; Heisenberg's equation of motion | 11/01/2021
10/01/2021
07/01/2021 | | 2.7 Ehrenfest's theorem; time evolution of
base kets; transition amplitudes. 2.8 Simple
Harmonic Oscillator: Energy eigenvalues and
energy eigenkets | 12/01/2021
15/01/2021
14/01/2021
13/01/2021 | | Unit III Theory of Angular Momentum | | | 3.1 Non-commutativity of rotations around different axes; the rotation operator; fundamental commutation relations for angular momentum operators | 18/01/2021
21/01/2021
20/01/2021
19/01/2021 | | 3.2 rotation operators for spin half systems; spin precession in a magnetic field | 22/01/2021
25/01/2021
26/01/2021
27/01/2021 | | 3.3 Pauli's two component formalism; 2X2 matrix representation of the rotation operator | 28/01/2021
30/01/2021
29/01/2021 | | 3.4 ladder operators; eigenvalue problem for angular momentum operators | 02/02/2021
01/02/2021
31/01/2021 | | 3.5 matrix representation of angular momentum operators. | 03/02/2021
04/02/2021 | | 3.6 Orbital angular momentum; orbital angular momentum as a generator of rotation. | 05/02/2021 | | 3.7 Addition of orbital angular momentum and spin angular momentum; addition of | 10/02/20213 | Theory | 18/02/2021 | |------------| | 17/02/2021 | | 16/02/2021 | | | | 19/02/2021 | | 22/02/2021 | | 23/02/2021 | | 24/02/2021 | | 25/02/2021 | | | #### V. Innovative Learning Programmes | Name of Programme | Duration | Туре | Proposed Time | |------------------------------------|----------|---------------|----------------------| | Demonstration of Theoreical models | 1 hour | Demonstration | 4 th Week | | Interactive section | 1 hour | | 1 st Week | #### VI. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission Dea | adlines | |----------------|---|---|--|---| | Assignmen
t | Assignment on given topic | Preparation of assignment | Wednesday of
8th Week of
Course | Submit the assignment to
Google Classroom before
11.59 pm | | Seminar | PowerPoint
presentation
on given
topic | PowerPoint Presentation for a presentation of 10 minutes duration | Wednesday of
10 th Week of
Course | Submit the assignment
Google Classroom before
11.59 pm | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### VII. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | 1 | | <75 | Not eligible for appearing for ESE | | | | #### VIII. Required reading: - 1. Modern Quantum Mechanics : J. J. Sakurai, Pearson Education. - 2. A Modern Approach to Quantum Mechanics: J S Townsend, Viva Books. - Quantum Mechanics (Schaum's Outline): Yoav Peleg etal. Tata Mc Graw Hill Private Limited, 2/e. - 2. Quantum Mechanics: 500 Problems with Solutions: G Aruldhas, Prentice Hall of India. - Quantum Mechanics Demystified: David McMohan, McGrawHill 2006. - 4. Introductory Quantum Mechanics: Richard L Liboff, Pearson Education . - 5. Introduction to Quantum Mechanics: D.J. Grifith, Pearson Education. - 6. Quantum Mechanics : V. K. Thankappan, New Age International. - 7. Quantum Mechanics: An Introduction: Walter Greiner and Allan Bromley, Springer. - Quantum Mechanics: Non-Relativistic Theory(Course of Theoretical Physics Vol3): L. D. Landau and E. M. Lifshitz, Pregamon Press. - 9. The Feynman Lectures on Physics Vol3, Narosa. Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS ERNAKULAM ## St. Albert's College (Autonomous) ## PPH4CRT0119 NUCLEAR AND PARTICLE PHYSICS #### I. Course Instructor | Name | Sem, Programme & Batch | Email | 7 | |--------------------|--------------------------|-------------------------|---| | CJ Agustine Sumesh | SemesterIV, M.Sc 2020-21 | sumeshcj@albertsiedu.in | | #### II. Duration of Course: | No | Activity | Duration | |----|---|---------------------------| | 1 | Contact hours | 51(Including assignments) | | 2 | Assessment (CAE & ESE) | 7 | | | Total | 58 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 6 (11) (11) (11) (11) | ### III. Course Objectives: - · To identify the various properties of nucleus, nuclear forces, and nuclear models. - To discuss about the different nuclear decay processes, interactions, their characteristics and analyses beta decay in detail. - Classify the elementary particles, nuclear interactions, symmetries and their conservation law - Explain the basic ideas of Higg's boson and the LHC experiments; detection of gravitational waves and LIGO #### IV. Course Delivery Plan This course is a course requiring lot of student centric learning processes. The teaching methods include lectures, discussions, field based assignments etc. | Topics | Session No &
Date(s) | Methodology and
Duration | |--|---|-----------------------------| | Topics | Session No & | Methodology and Duration | | These are the topics to be co
the modules | Solution of the second | ar eger gerer demogram et | | | 77.0 | | | UNIT-1
Nuclear properties and forces between
nucleons | | | |---|-----------------|-----------------| | Nuclear radius | 01/12/2020 | Class exercises | | Distribution of nuclear charge - Isotopic shft | 02/12/2020 | Lectures | | | | GD | | Muonic shift | 03/12/2020 | | | Mirror nuclei | 04/12/2020 | | | Distribution of nuclear matter | 07/12/2020 | | | Mass and abundance of nucleids | 08/12/2020 | | | Nuclear binding energy | 09/12/2020 | | | Nuclear angular momentum and parity | 10/12/2020 | | | Nuclear electromagnetic moments-
quadrupole
moment | 11/12/2020 | | | The deuteron – binding energy, spin , parity | 14/12/2020 | | | Mangnetic moment and electric quadrupole moment | 15/12/2020 | | | Nucleon - nucleon scattering | 16/12/2020 | | | Proton- proton interaction | 17/12/2020 | | | Neutron – neutron interaction | 18/12/2020 | | | Properties of nuclear forces | 21/12/2020 | | | Exchange force model | 22/12/2020 | | | UNIT – 2
Nuclear models and nuclear decay | OF PHYS OF WALL | | | Liquid drop model, Bethe - Weizacker | 22/12/2020 | | |---|--------------------------|--------------| | formula | 23/12/2020
24/12/2020 | | | Applications of soul applicated | 28/12/2020 | GD | | Applications of semi – empirical | 28/12/2020 | GD | | binding energy formula | | Lectures | | Shell model- shell model potential | 29/12/2020 | Lectures | | Spin orbit potential | 30/12/2020 | | | Magnetic dipole moments, electric | 31/12/2020 | | | quadrupole moments, valence nucleons | 51/12/2020 | | | Collective structure - Nuclear | 04/01/2021 | | | vibrations, nuclear rotations | | | | | | | | Beta decay – energy release in beta | 05/01/2021 | | | decay | 0.5104.18.05 | | | Fermi theory of beta decay | 06/01/2021 | | | Angular momentum and parity | 07/01/2021 | | | selection rules – allowed and forbidden | | | | transitions | 10/01/2021 | | | Comparative half lives and forbidden decays | 10/01/2021 | | | Non conservation of parity in beta | 11/01/2021 | | | decay | 11.01.2021 | | | Gamma decay – angular momentum | 12/01/2021 | | | and parity selection rules | | | | Internal conversion | 13/01/2021 | | | | | | | | | | | Unit III | | | | Nuclear reactions | | | | Tunes of reactions | 14/01/2021 | GD, Lectures | | Types of reactions
Conservation laws | 15/01/2021 | GD, Lectures | | Energetic of nuclear reaction | 18/01/2021 | | | Isospin | 19/01/2021 | | | Reaction crosssections | 20/01/2021 | | | Coulomb scattering | 21/01/2021 | | | | | | | Rutherford formula | 22/01/2021 | | | Nuclear scattering | 25/01/2021 | | | Scattering and reaction cross sections | 26/01/2021 | | | in terms of partial wave amplitudes | | | | Compound nucleus reactions | 27/01/2021 | | | Direct reactions | 28/01/2021 | | | Resonance reactions | 29/01/2021 | | | 18/0 | (ACUME IN ACUME IN | | | Unit IV Particle Physics | CULAN () | | | Yukawa's hypothesis- Properties of pi
mesons – electric charge, isospin, mass,
spin and parity | 30/01/2021
31/01/2021 | GD, Lectures | |--|--------------------------|---| | Decay modes and production of pi-
mesons | 01/02/2021 | | | Types of interactions between elementary particles, hadrons and leptons | 02/02/2021
03/02/2021 | | | Symmetries and conservation laws | 03/02/2021 | | | CP and CPT invariance | 04/02/2021 | | | Applications of symmetry arguments to particle reactions | 05/02/2021 | | | Parity non – conservation in weak interactions | 08/02/2021 | | | Quark model confined quarks, coloured quarks and gluons | 09/02/2021
10/02/2021 | Maria de la composición della | | Experimental evidences of quark model, quark gluon interaction, quark dynamics | 11/02/2021 | | | Grand unified theories | 12/02/2021 | | | Standard model of particle physics | 15/02/2021 | | | Unit V
Nuclear Astrophysics and particle
Applications of nuclear physics | | | | Particle and nuclear interactions in the early universe | 16/02/2021 | GD, Lectures | | Primordial nucleosynthesis | 17/02/2021 | | | Stellar nucleosynthesis(for both A<60 and A>60) | 18/02/2021 | | | Higgs boson and LHC experiments | 19/02/2021 | | | Detection of gravitational waves and LIGO(qualitative ideas only) | 22/02/2021 | | | Rutherford backscattering spectroscopy and applications | 23/02/2021 | | | Computerized axial tomography(CAT) | 24/02/2021 | | | Positron emission tomography(PET) | 25/02/2021 | | ## V. Innovative Learning Programmes | Name of Programme | Duration OF P | Туре | Proposed Time | |---------------------|---------------|---------------|----------------------| | Nuclear models | 1 hour | Demonstration | 4 th Week | | Interactive section | 1 hour | 1./ | 1 st Week | ### VI. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission Deadlines | | | |----------------|---|--|--|---|--| | Assignmen
t | Assignment on given topic | Preparation of assignment | Wednesday of
8th Week of
Course | Submit the assignment to
Google Classroom before
11.59 pm | | | Seminar | PowerPoint
presentation
on given
topic | PowerPoint
Presentation
for a
presentation
of 10 minutes
duration | Wednesday of
10 th Week of
Course | Submit the assignment
Google Classroom before
11.59 pm | | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. VII. Attendance (one component in class participation): | 5 | |------------------------------------| | 4 | | 3 | | 2 | | 1 | | Not eligible for appearing for ESE | | | ## VIII. Required reading: 1.Introductory nuclear physics, K. S Krane John Wiley - 2. Nuclear Physics, S. N. Ghoshal, S Chand & Company - 3. Nuclear Physics: Problem based Approach Including MATLAB, Hari M Agarwal, PHI Learning Private Limited, Delhi. - 4. Problems and Solutions in Atomic, Nuclear and Particle Physics: Yung Kuo Lim, World Scientific. - 5. Introduction to Nuclear and Particle Physics: V. M Mittal, R. C. Verma, S. C. Gupta(Prentice Hall India). - 6. Concepts of Nuclear Physics: B. L. Cohen, Tata McGrawHill. - 7. Nuclear Physics: An introduction SB Patel. New Age International. Appro- 8. Nuclear Physics: R R Roy and B P Nigam, New Age International. 9. Nuclear Physics: R Prasad, Pearson. 10. Atomic Nucleus: R D Evans, Mc GrawHill, New York. 11. Nuclear Physics: I Kaplan, Narosa, New Delhi(2/e) 12. Introduction to Elementary Particles: David Griffith, Wlley - VCH. OF DAY ST ALBERT S COLLEGE. Dr FOUIF FROBEL P.G ASSISTANT TO TESSION & HEAD DEPARTMENT PHYSICS ST. ALBERT OF COLLEGE (AUTONOMOUS) F I # St. Albert's College (Autonomous) ## PPH4CRT0320: COMMUNICATION SYSTEMS #### I. Course Instructor | Name | Programme | Batch | Semester | Email | |-----------------|---------------|---------|----------|----------------------------| | Dr.Louie Frobel | M.Sc. Physics | 2020-21 | 4 | louiefrobel@alberts.edu.in | #### II. Duration of Course: | No | Activity | Duration | |----|---|----------------------------| | 1 | Contact hours | 82 (Including assignments) | | 2 | Assessment (CAE) | 3 | | | Total | 85 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | ## III. Course Objectives: - Explain the theories of digital communication - · Discuss modulation and demodulation - Understand multiplexing techniques - Introduce wireless communication systems - Explain multiple access techniques - Illustrate fundamentals of satellite communication - Discuss theories related to fiber optic communications - Differentiate Chromatic, intermodal and nonlinear dispersion - Fundamentals and basic principles in radar system #### IV. Course Delivery Plan | MODULE I | | | |--|------------|----------| | THOU CELE I | | | | Digital Communication | | | | Pulse Communication - Introduction | 01-12-2020 | Lectures | | Pulse Modulation | 02-12-2020 |
Lectures | | PAM-PWM-PPM-PCM | 03-12-2020 | Lectures | | PCM-Sampling Theorem- Quantisation-
Noise Generation and Demodulation | 04-12-2020 | Lectures | | Companding-DPCM /*/ \/ | 07-12-2020 | Lectures | | ADPCM-Delta Modulation | 08-12-2020 | Lectures | | Information Theory - Coding - Noise | 09-12-2020 | Lectures | |--|-------------|------------| | Data Communication | 10-12-2020 | Lectures | | Digital Codes- Error Detection and | 11-12-2020 | Lectures | | Correction | | | | Data Sets and Interconnection | 14-12-2020 | Lectures | | Requirements | | | | Modem Classification Interfacing | 15-12-2020 | Lectures | | Multiplexing Techniques | 16-12-2020 | Lectures | | Frequency Division Multiplex | 17-12-2020 | Lectures | | Time Division Multiplex | 18-12-2020 | Lectures | | Digital Transmission Techniques | 31-12-2020 | Lectures | | ASK-FSK | 01-01-2021 | Lectures | | PSK-QPSK | 04-01-2021 | Lectures | | MODULE II | | | | Mobile Communication | | | | Introduction to Wireless Communication
Systems-Mobile Radio Systems Around
the World | 05-01-2021 | Lectures | | Examples of Wireless Communication
Systems: - Paging System- Cordless
Telephone System- Cellular Telephone
System | 06-01-2021 | Lectures | | How a Cellular Telephone Call is | 07-01-2021 | Lectures | | Made-Comparison of Common Mobile
Radio System | 47-13-100-W | P. Indiana | | Trends is Cellular and Personnel
Communications | 10-01-2021 | Lectures | | Wireless Communication Systems-2G | 11-01-2021 | Lectures | | Wireless Communication Systems-3G | 12-01-2021 | Lectures | | Wireless Communication Systems-4G | 13-01-2021 | Lectures | | Cellular Concept – Frequency Reuse | 14-01-2021 | Lectures | | Channel Assignment Strategies-Handoff
Strategies | 15-01-2021 | Lectures | | Prioritising Handoffs and Practical Handoff
Consideration | 18-01-2021 | Lectures | | Interference and System Capacity | 19-01-2021 | Lectures | | Improving Coverage and Capacity in
Cellular Systems-Cell Splitting- Sectoring
– Microcell Zone Concept | 20-01-2021 | Lectures | | Basic Idea of Path Loss and Multipath Fading | 21-01-2021 | Lectures | | Multiple Access Technique- Introduction-
FDMA-TDMA-SSMA | 22-01-2021 | Lectures | | FHMA-CDMA-Hybrid Spread Spectrum | 25-01-2021 | Lectures | | Techniques | OFF | HU | | SDMA | 26-01-2021 | Lectures | | GSM | 27-01-2021 | Lectures | | MODULE III | (* 0 | 2/ /2/ | | Satellite Communication | 17/ 067 | 70 121 | | Satellite Communication fundamentals | 28-01-2021 | Lectures | |---|-----------------|----------| | Satellite orbits | 29-01-2021 | Lectures | | Satellite positioning | 01-02-2021 | Lectures | | Frequency allocations | 02-02-2021 | Lectures | | Polarization | 03-02-2021 | Lectures | | Antennas-gain-beam width | 04-02-2021 | Lectures | | Multiple access techniques | 05-02-2021 | Lectures | | Geostationary Satellite Communication | 08-02-2021 | Lectures | | Satellite Parameters | 09-02-2021 | Lectures | | VSAT(Basic Idea) | 10-02-2021 | Lectures | | Geostationary satellite Path/Link Budget | 11-02-2021 | Lectures | | Satellite TV Systems | 12-02-2021 | Lectures | | Satellite TV broadcasting | 15-02-2021 | Lectures | | GPS | 16-02-2021 | Lectures | | MODULE IV | | | | Fiber Optics Communication | | | | Introduction, Ray theory transmission | 17-02-2021 | Lectures | | Total internal reflection, acceptance angle | 18-02-2021 | Lectures | | Numerical aperture, Skew rays | 19-02-2021 | Lectures | | Electromagnetic mode theory for optical | 22-02-2021 | Lectures | | propagation | | | | Electromagnetic waves | 23-02-2021 | Lectures | | Modes in planar guide | 24-02-2021 | Lectures | | Phase and group velocity | 25-02-2021 | Lectures | | Fiber classification, cylindrical fiber | 26-02-2021 | Lectures | | Step index, graded index | 01-03-2021 | Lectures | | Single mode fiber, Cut off wavelength, | 02-03-2021 | Lectures | | group delay | | | | Photonic crystal fibers, index guided micro structures | 03-03-2021 | Lectures | | Photonic band gap fibers | 04-03-2021 | Lectures | | Dispersion, Chromatic | 05-03-2021 | Lectures | | Intermodal, nonlinear effects | 08-03-2021 | Lectures | | Optical fiber connections- Fiber splices-
fusion splices | 09-03-2021 | Lectures | | Mechanical splices, Multiple splices | 10-03-2021 | Lectures | | Fiber connectors, cylindrical ferrule | 11-03-2021 | Lectures | | Duplex and multiple fiber connectors | 12-03-2021 | Lectures | | iber couplers | 15-03-2021 | Lectures | | MODULE V | of the Miles | | | Radar Systems | Barry Maria Pie | Leditor | | Basic Principles, Basic radar system | 16-03-2021 | Lectures | | Development of radar | 17-03-2021 | Lectures | | Performance factors, radar range equation | 18-03-2021 | Lectures | | Factors influencing maximum range | 19-03-2021 | Lectures | | Effect of noise, target properties | 22-03-2021 | Lectures | | | 0.70 | |-------|------| | * | RMAT | | GE | DH | | e PA(| RGE | | Page | M | | Pulsed system- block diagram and description | 23-03-2021 | Lectures | |---|------------|----------| | Antennas scanning-antenna tracking -display method | 24-03-2021 | Lectures | | Pulsed radar system | 25-03-2021 | Lectures | | Moving target indication: -doppler effect | 26-03-2021 | Lectures | | Fundamentals of MTI- delay line-blind speeds- radar beacons | 29-03-2021 | Lectures | | Other radar systems- CW Doppler
Radar-frequency modulated CW Radar | 30-03-2021 | Lectures | | Phased Array Radars- Planar Array Radars | 01-04-2021 | Lectures | V. Innovative Learning Programmes | Name of Programme | Duration | Type | Proposed Time | |-------------------|----------|------|---------------| | | | | | | | | | | ## VI. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission Deadlines | | |-------------------|--|--|----------------------|------------------| | Assignmen
t -1 | Assignment on given topic | Preparation of assignment | 13-01-2021 | Submit Hard copy | | Assignmen
(-2) | Assignment on given topic | Preparation of assignment | 29-03-2021 | Submit Hard copy | | Seminar | Power Point
Presentation
on given
topic | Presentation
of prepared
power point | 01-03-2021 | Submit Hard copy | Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. VII. Attendance (one component in class participation): | 95-100% | 5 | |---------|------------------------------------| | 90-95% | 4 | | 85-90% | 3 E DI | | 80-85% | 31.01.75 | | 75-80% | (2) (2) | | <75 | Not eligible for appearing for ESE | | | | ### VIII. Recommended Text Books: - Electronic Communication Systems by Kennedy/Davis, Mc Graw Hill Publication, 4th edition, (Module-1 and 5). - 2. Wireless Communication Principles and Practice by Theodore S Rappaport, Person Publication, 2nd edition (Module-2). - 3. Telecommunication Transmission Systems by Robert G Winch, McGrawHill Publication, 2nd edition, (Module-3) - 4. Optical fiber communications Principles and practice John M Senior, Pearson publications, 3rd edition, (Module-4). ### Recommended References: - 1. Optical Fiber Communications by Gerd Keiser (Module-2) - 2. Satellite Communications by Dennis Roddy, Mc Graw Hill Publication, 3rd edition. - 3. Introduction to RADAR Systems by Skolnik, McGraw Hills, 3rd edition - 4. Satellite communication by Dr. D.C.Agarwal. 5. Electronic Communication Systems by Wayne Thomas, Pearson Publication, 5th Edition Dipmo AM Dr. LOUIE FROBEL PG ASSISTANT PROFES. D DEPARTMENT OF S ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM # St. Albert's College (Autonomous) ## PPH3CRT0119: QUANTUM MECHANICS-II Course Instructor | Name | Programme | Batch | Semester | Email | |-------------------|---------------|---------|----------|--------------------------| | Dr. Sajeesh T. H. | M.Sc. Physics | 2020-21 | 111 | sajeeshth@alberts.edu.in | #### II. Duration of Course: | 11. | Duration of course. | | |-----|---|----------------------------| | No | Activity | Duration | | 1 | Contact hours | 72 (Including assignments) | | 2 | Assessment (CAE) | 3 | | | Total | 75 | | | Remedial Sessions/Peer Tutoring/Tutorials (need based & Optional) | 5 | #### III. Course Objectives: - · Learning time dependent problems in quantum mechanics. - Familiarise quantum field theory and to the techniques of quantum mechanics underlining the scattering problem. - Learning the concepts of relativistic quantum mechanics. | Topics | Session No & Date(s) | Methodology and
Duration | |---|----------------------|-----------------------------| | MODULE I | | | | Non-degenerate Perturbation Theory:
First order energy shift | 08-07-20 | Lecture | | first order correction to the energy eigenstate, second order energy shift | 09-07-20 | Lecture | | Harmonic oscillator subjected to a constant electric field | 15-07-20 | Lecture | | Degenerate Perturbation theory First order Stark effect in hydrogen | 16-07-20 | Lecture | | Zeeman effect in hydrogen and the
Lande g-factor | 22-07-20 | Lecture | | The variational Method | 23-07-20 | Lecture | | Estimation of ground state energies of harmonic oscillator and delta function potential | 29-07-20 | Lecture | | Ground State of Helium atom;
Hydrogen Molecule ion. | 30-07-20 | Lecture | OF PHYSICS VINTONHAMILE CH. Spring Dr. LOUIE FROBEL
P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM | The WKB method and its validity | 05-08-20 | Lecture | |--|----------|---------| | The WKB wavefunction in the classical region; non-classical region | 06-08-20 | Lecture | | connection formulas (derivation not required) | 12-08-20 | Lecture | | Potential well and quantization condition; the harmonic oscillator | 13-08-20 | Lecture | | Tunneling; application to alpha decay
MODULE II | 19-08-20 | Lecture | | Time dependent potentials; interaction picture | 20-08-20 | Lecture | | time evolution operator in interaction picture | 26-08-20 | Lecture | | Spin Magnetic Resonance in spin half systems | 27-08-20 | Lecture | | Time dependent perturbation theory | 02-09-20 | Lecture | | Dyson series; transition probability | 03-09-20 | Lecture | | constant perturbation | 09-09-20 | Lecture | | Fermi's Golden Rule; Harmonic perturbation | 10-09-20 | Lecture | | interaction of atom with classical
radiation field; absorption and
stimulated emission | 16-09-20 | Lecture | | electric dipole approximation;
photoelectric effect | 17-09-20 | Lecture | | Energy shift and decay width.
MODULE III | 23-09-20 | Lecture | | Bosons and fermions; anti-symmetric wave functions and Pauli's exclusion principle | 09-07-20 | Lecture | | The Helium Atom | 10-07-20 | Lecture | | The Asymptotic wave function - | 16-07-20 | Lecture | | differential scattering cross section and scattering amplitude | 17-07-20 | Lecture | | The Born approximation- scattering amplitude in Born approximation, validity of the Born approximation | 23-07-20 | Lecture | | Yukawa potential | 24-07-20 | Lecture | | Coulomb potential and the Rutherford formula | 30-07-20 | Lecture | | Partial wave analysis- hard sphere scattering | 31-07-20 | Lecture | | S-wave scattering for finite potential well | 06-08-20 | Lecture | | Resonances and Ramsauer-Townsend effect | 13-08-20 | Lecture | | MODULE IV | | | Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM | Klein-Gordon Equation; continuity equation and probability density in Klein-Gordon theory | 14-08-20 | Lecture | |--|----------|---------| | Non-relativistic limit of the
Klein-Gordon equation | 20-08-20 | Lecture | | Solutions of the Klein -Gordon equation for positive | 21-08-20 | Lecture | | Negative and neutral spin 0 particles | 27-08-20 | Lecture | | Klein-Gordon equation in the
Schrodinger form | 28-08-20 | Lecture | | Dirac Equation in the Schrodinger form | 03-09-20 | Lecture | | Dirac's matrices and their properties | 04-09-20 | Lecture | | Solutions of the free particle Dirac equation | 10-09-20 | Lecture | | single particle interpretation of the plane
waves; velocity operator;
zitterbewegung | 11-09-20 | Lecture | | Non-relativistic limit of the Dirac equation | 17-09-20 | Lecture | | spin of Dirac particles; Total angular
momentum as a constant of motion | 18-09-20 | Lecture | | Negative energy states and Dirac's hole theory | 24-09-20 | Lecture | #### IV. Innovative Learning Programmes | Name of Programme | Duration | Туре | Proposed Time | |-------------------|----------|------|---------------| | | | | | ### V. Assignments and Seminars #### Assignments The following Assignment needs to be submitted to Google Classroom. Both the assignments & presentation are individual assignments. | No | Topics | Activity | Submission Deadlines | | |--------------------|---|--|----------------------|------------------| | Assignmen
t -1 | Problems
related to
variational
method | Solution of problems | 14-08-20 | Submit Hard copy | | Assignmen
t -2` | Problems-W
KB method | Solution of problems | 24-09-20 | Submit Hard copy | | Seminar | | 100 mm m m m m m m m m m m m m m m m m m | | | PHYSICS PHYSICS STATE OF THE SECULO Mypans Dr. LOUIE FROBEL P.G ASSISTANT PROFESSOR & HEAD DEPARTMENT OF PHYSICS ST. ALBERT'S COLLEGE (AUTONOMOUS) ERNAKULAM Note: Failure to upload the assignment to Google Classroom on the date mentioned will result in 0 marks for the assignment. Requests for extension of dates for submission not entertained. #### VI. Attendance (one component in class participation): | 95-100% | 5 | |---------|-------------------------------------| | 90-95% | 4 | | 85-90% | 3 | | 80-85% | 2 | | 75-80% | 1 | | <75 | Not eligible for appearing for ESE. | #### VII. Required reading: #### Text Book: - 1. Modern Quantum Mechanics: J. J. Sakurai, Pearson Education. - 2. A modern Approach to Quantum Mechanics: John Townsend, Viva Books New Delhi - 3. Introduction to Quantum Mechanics: D.J. Griffith, Pearson Education - 4. Relativistic Quantum Mechanics: Walter Greiner, Springer-Verlag #### References: - Quantum Mechanics (Schaum's Outline Series): Youv Peleg et al., Tata McGraw Hill Education Private Limited, 2/c. - Quantum Mechanics: 500 Problems with Solutions: G Aruldhas, Prentice Hall of India. - Problems and Solutions in Quantum Mechanics: Kyriakos Tamvakis, Cambridge University Press. - 4. Introductory Quantum Mechanics: Richard L. Liboff, Pearson Education. - 5. Quantum Mechanics: V. K. Thankappan, New Age International. - A Textbook of Quantum Mechanics: P M Mathews and R Venkatesan, Tata McGraw Hill. - Quantum Mechanics: Non Relativistic Theory (Course of Theoretical Physics Course Vol3): L. D. Landau and E. M. Lifshitz, Pregamon Press. - Relativistic Quantum Mechanics: James D Bjorken and Sidney D Drell, Tata McGraw Hill 2013 OF HYSIC Dr. LOUIE ASSISTANT PROF. DEPARTMENT ST. ALBERT'S COLUE L P.G +& HEAD +YSICS JTONOMOUS)