DECEMBER 2003

VOLUME II .2

TAJOPAAM THE ALBERTIAN JOURNAL OF PURE AND APPLIED MATHEMATICS

A JOURNAL DEVOTED TO THE ENCOURAGEMENT OF RESEARCH IN MATHEMATICS

Rev. Dr. A.O.Konnully Memorial Research Centre Department of Mathematics St. Albert's College, Ernakulam Kochi-682 018, Kerala, India Tel: 0484-2394225; Fax: 0484-2391245; E-mail: stalbertscol@sify.com

TAJOPAAM

Volume II,Number 2 December 2003 Pages: 246 – 257.

FUZZY PROJECTIVITY

Shery Fernandez

(Research Scholar, Department of Mathematics, St. Albert's College, Kochi-682018 Kerala, India)

<u>Abstract</u>: The author studied about fuzzy G-modules and fuzzy representations in[8] and fuzzy injectivity in [9]. Cartan and Eilemberg introduced the notion of projectivity of modules in [3]. As a continuation of [8] and [9], here the concept fuzzy G-module projectivity is introduced and analysed.

I.Introduction

The *fuzzy set theory* was introduced by LA.Zadeh[I] in 1965. There were several attempts to fuzzify various mathematical structures. The fuzzification of algebraic structures was initiated by Rosenfield[2]. He introduced the notions of fuzzy subgroupoids and fuzzy subgroups and obtained their basic properties.

In the paper [6], Mac Lane formulated the projective and injective lifting properties for the category of abelian groups. Charles. A. Weibel [7] describes free and divisible abelian groups respectively. But he did not come to the notion of projective modules because he did not apply these lifting properties to categories of modules. Cartan and Eilemberg introduced the notion of projectivity of modules in [3]. The author studied about fuzzy G-modules and fuzzy representations in [8] and fuzzy injectivity in [9]. As a continuation of [8] and [9], here the concept fuzzy Gmodule projectivity is introduced and analysed.

2. Preliminaries

The terms and notations used in this paper are either standard or are explained as and when they first appear.

2.1 Definition. A G-module M is *projective* if for any G-module M* and any G-submodule N of M*, any homomorphism $\varphi : M \to M^*/N$ can be lifted to a homomorphism $\psi: M \to M^*$. That is, $\pi \cdot \psi = \varphi$, where $\pi : M^* \to M^*/N$ is the natural homomorphism.

2.2 Example. Let $G = C - \{0\}$ and M = C. Then M is a G-module. Since $G = C - \{0\}$, except the zero G-submodules, no proper subset of C becomes a G-module. If M* is any other G-module, then M* is anyone of the following: (i) M* = $\{0\}$; (ii) M* = Cⁿ (n ≥ 1) or M* is a G-submodule of Cⁿ; (iii) M* = 1^{p} ($1 \le p \le \infty$) or M* is a G-submodule of 1^{p} ; (iv) M* = Space of all functions from any set S into C; (v) M* = Space of polynomial functions over the field C; (vi) M* = Space of all m x n matrices over the field C. Let N be any G-submodule of M* and let $\varphi : M \to M^*/N$ be a homomorphism. (i) Here N = M* = $\{0\}$, and so the homomorphism $0 = \psi: M \to M^*$ lifts φ . (ii) Since Cⁿ is n-dimensional, Dim.N = m \le Dim.M* = t \le n. Let $\{u_1, u_2, \dots, u_m\}$ be a basis for N such that $\{\alpha_1, \alpha_2, \dots, \alpha_m, \dots, \alpha_k\}$. (t \le n) is a basis for M*. Then $\{\alpha_{m+1}+N, \alpha_{m+2}+N, \dots, \alpha_t+N\}$ is a basis for M*/N. Then $\psi: M \to M^*$ defined by

$$\psi(\mathbf{m}) = \sum_{i=m+1}^{t} c_i \alpha_i$$
, where $\varphi(\mathbf{m}) = \sum_{i=m+1}^{t} c_i (\alpha_i + N)$

is a homomorphism and it lifts the homomorphism φ . For let $\pi : M^* \to M^*/N$ be the projecton map. Then

$$\pi \bullet \psi (m) = \pi (\psi (m))$$
$$= \pi (\sum_{m+1}^{t} c_i \alpha_i)$$
$$= \sum_{m+1}^{t} c_i (\alpha_i + N)$$
$$= \varphi (m)$$

Therefore $\pi \cdot \psi = \phi$, so ψ lifts the homomorphism ϕ . (iii) follows from (ii). (iv) Here $M^* = M_1 \oplus M_2$, where M_1 is the G-submodule of M of all odd functions and M_2 is the G-submodule of M of all even functions. Then as in (ii), there exits a homomorphism $\psi : M \to M^*$, which lifts ϕ . (v) Follws from (iv). (vi) Since M* is an mn-dimensioal vectorspace over C, as in (ii), there exits a homomorphism $\psi : M \to M^*$, which lifts ϕ . Therefore in any case, the homomorphism ϕ can be lifted to a homomorphism $\psi : M \to M^*$. Therefore M is projective. \Box

2.3. Definition. Let M, M* be G-modules. Then M is *M*- projective* if for any G-submodule N of M*, any homomorphism $\varphi : M \to M^*/N$ can be lifted to a homomorphism $\psi : M \to M^*$.

2.4. Example. As in example 2.2, let $G = C - \{0\}$ and M = C. Let $M^* = C^n$ $(n \ge 1)$. Then M and M* are G-modules . Let N be any G-submodule of M*. Then from (ii) of example2.2, M is M*- projective.

2.5. Definition: A sequence of G-modules $M_1 \xrightarrow{\theta_1} M_2 \xrightarrow{\theta_2} M_3 \xrightarrow{\theta_3} \dots$ consists of an ordered family of G-modules M_1, M_2, M_3, \dots with Gmodule homomorphisms $\theta_1: M_1 \rightarrow M_2, \theta_2: M_2 \rightarrow M_3$, etc. For i > 1, we say that the sequence is **exact at Mi** if the image θ_{i-1} coincides with the kernel of θ_{i} . That is, $\theta_{i-1}(M_{i-1}) = Ker(\theta_i)$.

2.8. Example. Let G={1,-1}.Consider the G-modules $M_1 = \{0\}, M_2 = C, M_3 = R, M_4 = \{0\}$ over R. Consider the sequence $M_1 \xrightarrow{\theta_1} M_2 \xrightarrow{\theta_2} M_3 \xrightarrow{\theta_3} M_4$ with homomorphisms $\theta_1(0)=0, \theta_2(x+iy)=x+y, (x+iy\in M_2), \theta_3(x)=0, (x\in M_3)$. Then the above sequence is exact at M₃ because $\theta_2(M_2) = M_3 = \text{Ker } \theta_3$

2.7. Definition. An exact sequence $\{0\} \rightarrow M \xrightarrow{\mu} N \rightarrow \{0\}$ splits if there exits a homomorphism v: N \rightarrow M such that $\mu \cdot v = 1$, the identity map on N.

2.8. Example. The sequence in the example 2.8. splits because the map $v : M_3 \rightarrow M_2$ defined by v(x)=x+i0 ($x \in M_3$) is a homomorphism and $\theta_2 \cdot v = 1$, the identity map on M_3 . \Box

2.9. Proposition. Let M and M^* be G-modules such that M is M^* -projective. Then any epimorphism $f: M^* \to M$ splits.

Proof. Let N =ker.f. Then N is a G-submodule of M* and $f: M^* \to M$ is an onto homomorphism with kernel N, and hence M* / N \approx M.Let $\phi: M \to M^*$ / N be the isomorphism. Since M is M*-projective, ϕ can be lifted to a homomorphism $\psi: M \to M^*$. Therefore \Im a homomorphism $\psi: M \to M^*$ such that $f \cdot \psi = I$, identity on M. Hence the epimorphism $f: M^* \to M$

2.10. Proposition. Let M and M^* be G-modules such that M is M^* -projective. Let N be any G-submodule of M^* . Then M is N-projective and M is M^*/N -projective.

Proof. First to prove M is N -projective.Let Y be any G-submodule of N and $\varphi : M \to N/Y$ be a homomorphism. Let $\varphi_l: N/Y \to M^*/Y$ be the inclusion homomorphism. Since M is M^{*} -projective, \Im a homomorphism $\psi : M \to M^*$, which lifts $\varphi \cdot \varphi_l$. ie $\pi \cdot \psi = \varphi \cdot \varphi_l$, where $\pi: M^* \to M^*/Y$ is the projection map. Let $\pi_l = \pi | N$. Since φ_l is the inclusion homomorphism, \Im a homomorphism $\psi_l : M \to N$ such that $\pi_l \cdot \psi_l = \varphi$. Therefore M is N projective. Now to prove M is M*/N -projective. Let Y/N be any Gsubmodule of M*/N and let f:M \to (M*/N)/(Y /N) \to M*/Y be a homomorphism. Consider the projections $\pi : M^* \to M^*/Y$ and $\pi^1: M^* \to$ M^*/N . Since $f: M \to M^*/Y$ is a homomorphism and M is M^* -projective, the homomorphism f can be lifted to a homomorphism $g: M \to M^*$. ie, $\pi \cdot g = f$. Then the map $\pi' \cdot g : M \to M^*/N$ is a homomorphism and the homomorphism f can be lifted to $\pi' \cdot g$ because $\pi'' \cdot (\pi' \cdot g) = f$, where $\pi'': M^*/N \to (M^*/N)/(Y/N)$ be the projection map. Therefore M is M^*/N - projective. \Box

2.11. Proposition. A direct sum $M = \bigoplus_{i=1}^{n} M_i$ is M^* -projective if and only if M_i is M^* -projective, where M_i, M, M^* are all G-modules.

Proof. (\Rightarrow) Assume that $M = \bigoplus_{i=1}^{n} Mi$ is M*-projective. Let $\pi_i : M \to M_i$ ($1 \le i \le n$) be the projection map. Let N be any G-submodule of M* and $\varphi_i : M_i \to M^*/N$ be a homomorphism. Then $\varphi_i \cdot \pi_i : M \to M^*/N$ is a homomorphism. Since M is M*-projectivite, $\varphi_i \cdot \pi_i$ can be lifted to a homomorphism $\psi : M \to M^*$.ie, $\pi \cdot \psi = \varphi_i \cdot \pi_i$, where $\pi : M^* \to M^* /N$ is the projection. Then $\psi_i = \psi/M_i : M_i \to M^*$ is a homomorphism and it lifts the homomorphism φ_i because $\pi \cdot \psi_i = \varphi_i$. Therefore M_i is M*-projective.

(\Leftarrow) Suppose M_i is M*-projective and M = $\bigoplus_{i=1}^{n}$ M_i. Let N be any Gsubmodule of M* and $\varphi : M \to M^*/N$ be any homomorphism. Let $\varphi_i : M_i \to M$ ($1 \le i \le n$) be the inclusion homomorphism. Then $\varphi \cdot \varphi_i : Mi \to M^*/N$ is a homomorphism. Since M_i is M*-projective, $\varphi \cdot \varphi_i$ can be lifted to a homomorphism $\psi_i : M \to M^*$. ie, $\pi \cdot \psi_i = \varphi \cdot \varphi_i$, where $\pi : M^* \to M^*/N$ is the projection. Let $\psi_i = \psi_i/M_i$ for all i. Then $\psi: M \to M^*$ is a homomorphism and $\pi \cdot \psi = \varphi$. Therefore M is M*-projective. \Box

2.12. Proposition. Let M, M_i ($1 \le i \le n$) be G-modules. Then M is $\bigoplus_{l} M_{l}$ -projective if and only if M is M_i -projective for all i.

Proof. (\Rightarrow) This part follows from Proposition 2.12.

(\Leftarrow) Suppose M is M_i-projective, for all i and let M* = $\bigoplus M_i$. To

prove M is M*-projective. Let N be any G-submodule of M* and $\varphi: M \rightarrow M^*/N$ be any homomorphism. For $m \in M$, $\varphi(m) = \Sigma m_i' + N$; $m_i' \in M_i$. If also $\varphi(m) = \Sigma n_i' + N$; $n_i' \in M_i$. Then $\Sigma (m_i' - n_i') \in N$. Therefore $m_i' - n_i' \in N \cap M_i$

 $(1 \le i \le n)$. In other words, $\varphi(m)$ determines $m_i' \mod M_i \cap N$. So φ gives the map $\varphi_i: M \to M_i/(M_i \cap N)$ by $\varphi_i(m) = m_i' + (M_i \cap N)$. Since $M_i \cap N$ is a G-submodule of M_i and M is M_i -projective, for all i, φ_i $(1 \le i \le n)$ can be lifted to a homomorphism $\psi_i: M \to M_i$. Put all these ψ_i $(1 \le i \le n)$ together, we get $\psi: M \to \bigoplus_{i=1}^{n} M_i = M^*$, which is well defined because $\varphi(m) = \sum m_i' + N$ only finitely many m_i 's are non-zero. Also the map $\psi: M \to M^*$ lifts φ because ψ_i lifts φ_i f or all i. Therefore M is $M^* = \bigoplus_{i=1}^{n} M_i$ -projective. \Box

2.13. Definition. A G-module M is quasi-projective if M is M-projective.

2.14. Example. In example 2.4, if $G = \{1, -1, i, -i\}$ and $M = M^* = C$, then M is quasi-projective. \Box

2.15. Definition. Two G-modules M and M* are said to be *relatively projective* if M is M*-projective and M* is M-projective.

3. Projectivity and Quasi-projectivity of Fuzzy G-modules.

3.1. Definition. Let M and M* be G-modules. Let μ and v be fuzzy G-modules on M and M* respectively. Then μ is *v-projective* if (i) M is M*-projective and (ii) $\mu(m) \le v (\psi(m))$, for all $\psi \in \text{Hom}(M, M^*)$

3.2. Example. In example 2.4, if $G = \{1, i, -1, -i\}$ we have M = C is $M^* = C^n$ -projective. Define $\mu : M \rightarrow [0, 1]$ by

$$\begin{array}{rcl} \mu(x) &=& 1, & \text{if } x = 0 \\ &=& \frac{1}{2}, & \text{if } x \neq 0 \end{array}$$

Then μ is a fuzzy G-module on M. Define $v : M^* \rightarrow [0,1]$ by

$$v(x) = 1,$$
 if $x = 0$
= $\frac{3}{4},$ if $x = 0$

Then v is a fuzzy G-module on M*. Also $\mu(m) \leq v(\psi(m))$, for all $\psi \in Hom$ (M,M*). Therefore μ is v - projective. \Box

3.3. Proposition. Let M be a G-module and N be a G-submodule of M. If M has a fuzzy G-module, then both G-submodules N and M/N has fuzzy Gmodules.

Proof. Follows form Proposition 3.4 of [9]. \Box

3.4. Proposition. Let M and M* be G-submodules such that M* is finite dimensional and M is M*-projective. Let $B = \{\beta_1, \beta_2, \dots, \beta_n\}$ be a basis for M*. Let μ and ν be fuzzy G-modules on M and M* respectively. If $\mu(m) \leq \frac{1}{2}$ $v(\beta_i)$ for all $m \in M$, then μ is v-projective.

Proof. Let $\psi \in \text{Hom}(M,M^*)$. Then for any $m \in M, \psi(m) \in M^*$. So $\psi(m) =$ $c_1 \beta_1 + c_2 \beta_2 + \dots + c_n \beta_n$, where c_i 's are scalars.

(1) $v(\psi(m)) = v(c_1 \beta_1 + c_2 \beta_2 + \dots + c_n \beta_n) \ge \hat{v}(\beta_1)$

Given that $\hat{j} v(\beta_j) \ge \mu(m), m \in M$.

From (1) and (2), μ (m) $\leq v$ (ψ (m)), $\forall m \in M$ and $\psi \in Hom(M, M^*)$. Therefore μ is v -projective. \Box

3.5. Proposition. Let M and M^* be G-modules and μ, v be fuzzy G-modules on M and M* respectively such that μ is v -projective. If N is a Gsubmodule of M^* and v' is any fuzzy G-module on N, then μ is v'-projective if v' exceeds v on N.

Proof. Given μ is v-projective. Then (i) M is M*-projective and (ii) μ (m) $\leq v (\psi(m)), \forall m \in M \text{ and } \psi \in Hom(M, M^*)$. Since M is M*-projective and N is a G-submodule of M*, from Proposition 2.10, M is N-projective. Let $\phi \in \text{Hom}(M,N)$ and $\eta : N \rightarrow M^*$ be the inclusion homomorphism. Then $\eta \cdot \phi$ = $\psi \in Hom(M, M^*)$ and so from (ii),

$$\mu$$
 (m) \leq v ($\eta(\varphi(m))$), m \in M

: .

$$\mu$$
 (m) \leq v (ϕ (m)), m \in M and $\phi \in$ Hom(M,N) (1)

Since $\phi(m) \in N$, we have $v(\phi(m)) \le v'(\phi(m))$. Then (1) becomes

$$\mu$$
 (m) \leq v'(ϕ (m)), \forall m \in M and $\phi \in$ Hom(M,N).

Therefore μ is v'-projective.

(2)

(1)

3.6. Remark. If μ is any fuzzy G-module on a G-module M, then for $r \in [0,1], \mu_r: M \rightarrow [0,1]$ defined by

$$\mu_{\mathbf{r}}(\mathbf{m}) = \mathbf{r} \cdot \mu(\mathbf{m}), \forall \mathbf{m} \in \mathbf{M}$$

is a fuzzy G-module on M and μ exceeds μ_r , for all $r \in [0,1]$. \Box

3.7. Proposition. Let μ and v be the fuzzy G-modules on the G-modules M and M* respectively. If μ is v_r -projective ($\forall r \in [0,1]$) then μ is v-projective and the converse hold if v_r exceeds μ .

Proof. (\Rightarrow) Assume μ is v_r -projective. Then (i) M is $rM^* = M^*$ -projective. and (ii) μ (m) $\leq v_r(\psi$ (m)), m \in M and $\psi \in$ Hom(M,M*). Since v exceeds v_r , for all $r \in [0,1]$, from (ii) we have $\mu(m) \leq v(m)$, $\forall m \in M$ and $\psi \in$ Hom(M,M*). Therefore μ is v-projective.

(\Leftarrow) Assume μ is v-projective. We have v exceeds v_r , for all $r \in [0,1]$, and also it is given that v_r exceeds μ , so v exceeds μ . Therefore $\mu(m) \leq v(\psi(m)), \forall m \in M \text{ and } \psi \in \text{Hom}(M,M^*)$. Therefore μ is v_r -projective.

3.8.Definition. A fuzzy G-module μ on a G-module M is *quasi-projective* if μ is μ -projective.

3.9. Example. Let $G = \{1,-1\}$ and M = R. Then M is a G-module over R. Also, M is M-projective.

Define	μ : Μ	\rightarrow [0,1] by	
	μ(m)	= 1,	ifm = 0
		$= \frac{1}{2}$,	if m≠0

Then μ is a fuzzy G-module on M and $\mu(m) \leq \mu(\psi(m))$, for all $\psi \in \text{Hom}(M,M)$. Therefore μ is quasi-projective. \Box

4. Some More Theorems

4.1.Theorem. Let $M = \bigoplus_{i=1}^{n} M_{i}$, where M_{i} 's are G-submodules of the G-module M_{i} . Let μ be a fuzzy G-module on M and v_{i} 's be fuzzy G-modules on M_{i}

such that $v = \bigoplus_{i=1}^{n} v_{i}$. Then μ is v-projective if and only if μ is v_{i} -projective, for all *i*.

Proof. (\Rightarrow) Assume μ is v-projective. Then (i) M is $M = M_i$ -projective. and (ii) $\mu(m) \le v(\psi(m))$, $\forall \psi \in Hom(M,M)$. From (i) and proposition 2.12, we have M is M_i -projective for all i. Let $\phi \in Hom(M,M_i)$ and $\eta: M_i \rightarrow M$ be the inclusion homomorphism. Then $\psi = \eta \cdot \phi : M \rightarrow M$ is a homomorphism and from (ii),

$$\mu(\mathbf{m}) \le \mathbf{v}(\psi(\mathbf{m})) = \mathbf{v}(\eta(\varphi(\mathbf{m})) = \mathbf{v}(\varphi(\mathbf{m})), \forall \mathbf{m} \in \mathbf{M}$$
(1)

Since $\phi \in \text{Hom}(M,M_i)$, $\phi(m) \in M_i$, and

· .

Hence (1) implies μ (m) $\leq v_i(\varphi$ (m)), $\forall m \in M$ and $\varphi \in Hom(M, M_i)$. Therefore μ is v_i -projective for all i.

(\Leftarrow) Assume μ is v_i-projective for all i. Then (a) M is M_i-projective and (b) $\mu(m) \leq v_i(\varphi(m))$ for all $\varphi \in \text{Hom}(M,M_i)$. From (a) and from the proposition 2.12, M is $M = \bigoplus_{i=1}^{n} M_i$ -projective. Let $\psi \in \text{Hom}(M,M)$. Then $\psi(m) \in M$, $\forall m \in M$. So $\psi(m) = m_1 + m_2 + \dots + m_n$, $m_i \in Mi$. Let $\pi_i : M \rightarrow M_i$ be the projection map $(1 \leq i \leq n)$, then $\pi_i(\psi(m)) = m_i$, for all i. Then

 $= \pi_1(m) + \pi_2(\psi(m)) + \dots + \pi_n(\psi(m))$ $\Psi(m)$ = $\pi_i \bullet \psi$. Then $\phi_i \in \text{Hom}(M,M_i)$. Then Let φi $= \phi_{l}(m) + \phi_{2}(m) + + \phi_{n}(m)$ ψ(m) $\leq v_i(\phi_i(m)), m \in M \text{ and for all } i \leq \frac{\Lambda}{1} \{v_i(\phi_i(m))\}$ From (b), μ(m) $v(\psi(m)) = \Lambda_{1} v_{i}(\phi_{i}(m))$ From (2), $\leq v(\psi(m)), m \in M \text{ and } \psi \in Hom(M,M); \text{ and hence}$ Therefore $\mu(m)$ μ is v-projective. \Box

254

4.2.Corollory. Let $M = \bigoplus_{l=1}^{n} M_{i}$, where Mi's are G-submodules of the G-module M. Let v_i 's are fuzzy G-modules on M_i such that $v = \bigoplus_{l=1}^{n} v_i$. Then v_{ls} quasi-projective if and only if v is v_i -projective, for all i.

Proof. Obtained by replacing μ in theorem 4.1 by v. \Box

We proceed to give below some results regarding fuzzy projectivity; omitting their proofs.

4.3. Theorem. Let M_i 's are fuzzy G-modules. Then the direct sum $\bigoplus_{l=1}^{n} M_i$ is quasi-projective if and only if M_i is M_j -projective $(1 \le i, j \le n)$. \Box

4.4.Corollory. Let M be a G-module . For a positive integer n, $M^n = M \oplus M \oplus ... \oplus M$ (n copies) is quasi-projective if and only if M is quasi-projective. \Box

4.5. Theorem. Let $M = M_1 \oplus M_2$, where M_1 and M_2 are *G*-submodules of *M*. Let v_i 's are fuzzy *G*-modules on M_i $(l \le i \le 2)$ such that $v = v_1 \oplus v_2$. Then *v* is quasi-projective if and only if v_i is v_j -projective $\forall i, j \in \{1, 2\}$. \Box

4.6.Theorem. Let $M = \bigoplus_{i=1}^{n} M_{i}$, where M_{i} 's are G-submodules of the Gmodule M. Let v_{i} 's be fuzzy G-modules on M_{i} $(1 \le i \le n)$ such that $v = \bigoplus_{i=1}^{n} v_{i}$ Then v is quasi-projective if and only if v_{i} is v_{j} -projective, $\forall i, j \in \{1, 2, ..., n\}$

4.7.Theorem. Let $M = \bigoplus_{i=1}^{n} M_i$ and $M^* = \bigoplus_{i=1}^{n} N_j$, be G-modules, where M_i 's are G-submodules of M and N_j 's are G-submodules of M^* . Then both M and M^* are relatively projective and relatively injective. If μ and ν be fuzzy G-modules on M and M^* respectively, then μ is ν -injective if and only if ν is μ -projective. \Box

4.8.Theorem. Let $M = \bigoplus_{i=1}^{n} M_i$, where M_i 's are G-submodules of M. Then M is quasi-injective and quasi-projective. If μ is any fuzzy G-module on M, then μ is quasi-injective if and only if μ is quasi-projective. \Box

4.9. Corollory. Any finite dimensional G-module has a fuzzy G-module

which is both quasi injective and quasi-projective. \Box

4.10.Example. Let $G=(Z_p,x_p)$, where p is prime, be the group of multiplication modulo p. Consider the field $F = (Z_p, +_p, x_p)$. Let $M = F(\sqrt{2}) = \{ a+b\sqrt{2} / a, b \in F \}$, where + denote $+_p$ (addition modulo p). Then M is a vector space over F. Let $g \in G$ and $m = a+b\sqrt{2} \in M$. Define $g.m = g.(a+b\sqrt{2}) = (g x_p a) + (g x_p b) \sqrt{2}$, where + denote $+_p$. Then $gm \in M$ and satisfies

- (i) $g.(m_1+m_2) = gm_1+gm_2$
- (ii) (g g')m = g(g'(m))
- (iii) 1.m = m, for all $m,m_1,m_2 \in M \& g,g' \in G$

Therefore M is a G-module . Let $M^* = F^2 = \{ (a,b) / a, b \in F \}$. Let $g \in G$, $m^* = (a,b) \in M^*$. Define $g.m^* = g.(a,b) = (g x_p a, g x_p b) \in M^*$. Then M^* also is a G-module . Also $M = F.1 \oplus F\sqrt{2}$ and $M^* = F\epsilon_1 \oplus F\epsilon_2$, where $\epsilon_1 = (1,0)$ and $\epsilon_2 = (0,1)$. Then we can show that M and M* are relatively projective and relatively injective. Define $\mu : M \rightarrow [0, 1]$ by

$$\mu (x) = 1, \text{ if } x = a + b\sqrt{2} = 0$$

= 3/4, if b=0 & a \ne 0
= 1/2, if b \ne 0

Then μ is a fuzzy G-module on M. Define v: M* \rightarrow [0,1] by

$$v(m^*) = \frac{1}{2}$$
, if $m^* = 0$,
= $\frac{1}{4}$, if $m^* \neq 0$

Then v is a fuzzy G-module on M*. Also v (m*) $\leq \mu(1) \wedge \mu(\sqrt{2})$ for all m* \in M*. Hence by proposition 3.5, v is μ - projective and so by theorem 4.7, μ is v-injective. \Box

5. References

- [1] LA.Zadeh, Fuzzy sets, Inform. control, 8 (1965).
- [2] A.Rosenfield, Fuzzy groups, J.Math.Anal.Appli.35 (1971).
- [3] H.Cartan and S.Eilemberg, Homological algebra, Princeton U.Press,

(1956).

- [4] S.H.Mohamed and Brune.I.Muller, Continuous and Discrete Modules, Cambridge University (1990)
- [5] Charles W.Curties and Irving Reiner, Representation Theory of finite group and associative algebra, INC(1962).
- [6] Mac Lane, Groups, Categories and duality, Proc.Nat.Acad.Sci.34 (1948)
- [7] Charles A. Weibel, Free divisible abelian groups.
- [8] Shery Fernandez, Fuzzy G-modules and Fuzzy Representations, TAJOPAAM, 1(2002)
- [9] Shery Fernandez, Fuzzy Injectivity, TAJOPAAM, II.1 (2003)